Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patient Trial Of Personalized Two-Drug Therapy For Brain Tumors Launched

06.04.2010
Avastin and Tarceva, which target different tumor-growth pathways, are being studied by the Brain Tumor Trials Collaborative, which includes 13 centers across the nation.

Patients suffering from recently diagnosed malignant brain tumors called glioblastoma multiforme or a rare variant called gliosarcoma may be eligible to participate in a Phase II clinical trial at Cedars-Sinai Medical Center that combines two innovative drugs.

Cedars-Sinai’s Cochran Brain Tumor Center is the only site in California and one of only 13 in the nation offering this experimental therapy through the Brain Tumor Trials Collaborative (BTTC) based at M.D. Anderson Cancer Center in Houston.

Glioblastoma multiforme is a highly aggressive, treatment-resistant brain tumor. Even with standard therapies – surgery, chemotherapy and radiation – patient survival averages less than 15 months.

The two anticancer drugs, Avastin® (bevacizumab) and Tarceva® (erlotinib), work through different molecular mechanisms to attack brain tumors. Avastin inhibits vascular endothelial growth factor (VEGF), a protein that contributes to the formation of blood vessels that tumors need for growth. Tarceva is designed to prevent tumor growth by blocking a signal pathway that controls cell division by binding to a cancer cell membrane receptor called epidermal growth factor (EGFR).

Although single-agent targeted therapies have not produced significant improvements in treating glioblastomas, laboratory experiments and studies in animals suggest that a combination approach may have greater impact. This two-drug combination is also in clinical trials for the treatment of other cancers, including non-small cell lung cancer and renal cell carcinoma.

While all glioblastoma multiforme tumors share certain characteristics, they are not all genetically alike. This patient trial is specifically designed for those whose tumor cells have “unmethylated MGMT promoter.” This provides an especially strong study of the effects of the new two-drug approach because these tumors are resistant to the type of chemotherapy typically prescribed for patients with glioblastoma.

“Unmethylated MGMT promoter” means that a gene involved in repairing damaged tumor DNA is highly active in the tumor cells. When this gene, MGMT (O6-methylguanine-DNA methyltransferase), is functioning in cancer cells, it makes the tumor resistant to certain types of chemotherapy – including temozolamide, which is often used to treat glioblastoma – because it helps repair the damage the drug inflicts. On the other hand, if the gene is “silenced” (blocked) – through a process called methylation – the tumor will be more vulnerable to temozolomide.

The two-drug therapy will be administered after standard treatment with temozolomide and radiation therapy. Because radiation has been found to increase activation of certain molecular factors that the two drugs target, it is theorized that radiation therapy may stimulate a greater antitumor effect from the drugs.

Additional information on the clinical trial is available by calling 310-423-3062 or by visiting: http://www.cedars-sinai.edu/305.html.

The mission of the Brain Tumor Trials Collaborative “is to develop and perform hypothesis-based, state-of-the-art clinical trials in a collaborative and collegial environment, emphasizing innovation and meticulous attention to protocol compliance and date quality.” The group is led by researchers at M.D. Anderson Cancer Center in Houston and includes investigators at Cedars-Sinai and 11 other cancer research and treatment centers across the nation.

Other current members are: Baylor University Medical Center, Dallas; Dana Farber Cancer Center, Boston, M.D. Anderson Cancer Center – Orlando, Fla.; Medical University of South Carolina, Charleston; Memorial Sloan-Kettering Cancer Center, N.Y.; Methodist Hospital System, Houston; Northshore University Health System, Chicago; Northwestern University Feinberg School of Medicine, Chicago; Ohio State University A.G. James Cancer Hospital, Columbus; the University of Washington, Seattle; and the University of Texas Southwestern in Dallas.

Sandy Van | Cedars-Sinai News
Further information:
http://www.cedars-sinai.edu/305.html

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>