Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH-created toxin can kill HIV-infected cells that persist despite treatment

10.01.2014
Approach could potentially be part of future HIV cure strategy

A team including University of North Carolina and NIH scientists has demonstrated in a mouse model that an HIV-specific poison can kill cells in which the virus is actively reproducing despite antiretroviral therapy. According to the researchers, such a targeted poison could complement antiretroviral therapy, which dramatically reduces the replication of HIV in infected cells but does not eliminate them.

The 40 mice in the experiment were bioengineered to have a human immune system. They were infected with HIV for several months and then given a combination of antiretroviral drugs for four weeks. Half of the animals subsequently received a two-week dose of a genetically designed, HIV-specific poison, or immunotoxin, to complement the antiretrovirals, while the other half continued receiving antiretrovirals alone. The scientists found that, compared to antiretrovirals alone, the addition of the immunotoxin significantly reduced both the number of HIV-infected cells producing the virus in multiple organs and the level of HIV in the blood.

According to the researchers, these findings, coupled with results from previous studies, suggest that treating certain HIV-infected people with a combination of antiretrovirals and an immunotoxin might help achieve sustained disease remission, in which HIV can be controlled or eliminated without a lifetime of antiretroviral therapy. However, further study is required, the scientists write.

The immunotoxin, known as 3B3-PE38, was created in 1998 in the laboratories of Edward A. Berger, Ph.D., of the National Institute of Allergy and Infectious Diseases, and Ira Pastan, Ph.D., of the National Cancer Institute, both part of NIH. This genetically modified bacterial toxin targets HIV-infected cells and becomes internalized by them, shutting down protein synthesis and triggering cell death. The study was designed by Drs. Berger and Pastan in collaboration with J. Victor Garcia, Ph.D., and colleagues at the University of North Carolina School of Medicine, where the experiments were performed.

ARTICLE: PW Denton et al. Targeted cytotoxic therapy kills persisting HIV-infected cells during ART. PLOS Pathogens DOI: ppat.1003872 (2014).

NIAID Director Anthony S. Fauci, M.D., and Edward A. Berger, Ph.D., senior investigator in the NIAID Laboratory of Viral Diseases, are available for comment.

CONTACT: To schedule interviews, please contact Laura S. Leifman, (301) 402-1663, sivitzl@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases.

NIH...Turning Discovery Into Health®

aura S. Leifman | EurekAlert!
Further information:
http://www.nih.gov/
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>