Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple pathways progressing to Alzheimer's disease

26.06.2015

Disorder develops differently in individuals, complicating efforts to diagnose early

The amyloid cascade hypothesis of Alzheimer's disease (AD) posits that sticky aggregations or plaques of amyloid-beta peptides accumulate over time in the brain, triggering a series of events that ultimately result in the full-blown neurodegenerative disorder. The hypothesis has been a major driver of AD research for more than 20 years.


This is a micrograph of amyloid plaques and neurofibrillary tangles in human brain.

Credit: Thomas Deerinck/National Center for Microscopy and Imaging Research at UC San Diego

However, in a new study published this week online in the Journal of Alzheimer's Disease, researchers at University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System suggest the picture is not so clear-cut, reporting that early indicators or biomarkers of AD development are not fixed in a specific sequence.

"Our current ability to identify early stages of AD is limited by the focus on amyloid accumulation and the expectation that biomarkers follow the same timeline for all individuals," said Emily C. Edmonds, PhD, a senior postdoctoral fellow in the Department of Psychiatry and first author of the study.

But, Edmonds said, "AD is complex in the sense that there may be different neurobiological pathways leading to expression of the disease. Our findings suggest that the number of abnormal biomarkers and cognitive markers an individual possesses, without regard to the temporal sequence, is most predictive of future decline."

"Preclinical AD" is a very early stage of AD prior to the appearance of diagnosable symptoms. Current National Institute of Aging-Alzheimer's Association (NIA-AA) criteria for preclinical AD describe a disease progression that begins with accumulation of amyloid-beta, leading to neurodegeneration, cognitive decline and, eventually, diagnosable AD.

In their study, researchers classified 570 cognitively normal participants in the Alzheimer's Disease Neuroimaging Initiative according to NIA-AA criteria, and then separately examined the participants based upon the presence and number of abnormal biological and cognitive markers associated with preclinical AD. They found that neurodegeneration alone was 2.5 times more common than amyloid accumulation alone at baseline measurements.

They then examined only those participants who progressed to a diagnosis of mild cognitive impairment, which is an at-risk cognitive state of AD. They found that it was most common to show neurodegeneration as the first sign of early AD, and equally common to show amyloid accumulation or subtle cognitive decline as the first sign.

Edmonds said that the findings underscore the need to improve identification of persons at risk for AD through the use of multiple, diverse assessment tools. This includes sensitive learning and memory tests capable of reliably identifying cognitive changes at the earliest stages.

"At present, it is much more common for assessment of cognition to be based on insensitive screening measures or reports of cognitive problems by patients or their family members," said Edmonds. "These blunt screening tools can be very unreliable, which might explain why cognitive decline has traditionally been viewed as occurring later in the disease process. The integration of sensitive neuropsychological measures with assessment of biomarkers of AD can enhance our ability to more accurately identify individuals who are at risk for future progression to AD."

###

Co-authors include Lisa Delano-Wood, Douglas R. Galasko, and Mark W. Bondi, UCSD and Veterans Affairs San Diego Healthcare System; and David P. Salmon, UCSD.

Funding for this research came, in part, National Institutes of Health grants R01 AG012674, K24 AG026431 and P50 AG05131.

Media Contact

Scott LaFee
slafee@ucsd.edu
619-543-6163

 @UCSanDiego

http://www.ucsd.edu 

Scott LaFee | EurekAlert!

More articles from Health and Medicine:

nachricht Uncuffing nitric oxide production: Beta-arrestin2 complexes regulate NO levels
05.06.2020 | Medical University of South Carolina

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>