Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse studies reveal promising vitamin D-based treatment for MS

30.09.2013
A diagnosis of multiple sclerosis (MS) is a hard lot. Patients typically get the diagnosis around age 30 after experiencing a series of neurological problems such as blurry vision, wobbly gait or a numb foot. From there, this neurodegenerative disease follows an unforgiving course.

Many people with MS start using some kind of mobility aid -- cane, walker, scooter or wheelchair -- by 45 or 50, and those with the most severe cases are typically bed-bound by 60. The medications that are currently available don't do much to slow the relentless march of the disease.

In search of a better option for MS patients, a team of University of Wisconsin-Madison biochemists has discovered a promising vitamin D-based treatment that can halt -- and even reverse -- the course of the disease in a mouse model of MS. The treatment involves giving mice that exhibit MS symptoms a single dose of calcitriol, the active hormone form of vitamin D, followed by ongoing vitamin D supplements through the diet. The protocol is described in a scientific article that was published online in August in the Journal of Neuroimmunology.

"All of the animals just got better and better, and the longer we watched them, the more neurological function they regained," says biochemistry professor Colleen Hayes, who led the study.

MS afflicts around 400,000 people nationwide, with 200 new cases diagnosed each week. Early on, this debilitating autoimmune disease, in which the immune system attacks the myelin coating that protects the brain's nerve cells, causes symptoms including weakness, loss of dexterity and balance, disturbances to vision, and difficulty thinking and remembering. As it progresses, people can lose the ability to walk, sit, see, eat, speak and think clearly.

Current FDA-approved treatments only work for some MS patients and, even among them, the benefits are modest. "And in the long term they don't halt the disease process that relentlessly eats away at the neurons," Hayes adds. "So there's an unmet need for better treatments."

While scientists don't fully understand what triggers MS, some studies have linked low levels of vitamin D with a higher risk of developing the disease. Hayes has been studying this "vitamin D hypothesis" for the past 25 years with the long-term goal of uncovering novel preventive measures and treatments. Over the years, she and her researchers have revealed some of the molecular mechanisms involved in vitamin D's protective actions, and also explained how vitamin D interactions with estrogen may influence MS disease risk and progression in women.

In the current study, which was funded by the National Multiple Sclerosis Society, Hayes' team compared various vitamin D-based treatments to standard MS drugs. In each case, vitamin D-based treatments won out. Mice that received them showed fewer physical symptoms and cellular signs of disease.

First, Hayes' team compared the effectiveness of a single dose of calcitriol to that of a comparable dose of a glucocorticoid, a drug now administered to MS patients who experience a bad neurological episode. Calcitriol came out ahead, inducing a nine-day remission in 92 percent of mice on average, versus a six-day remission in 58 percent for mice that received glucocorticoid.

"So, at least in the animal model, calcitriol is more effective than what's being used in the clinic right now," says Hayes.

Next, Hayes' team tried a weekly dose of calcitriol. They found that a weekly dose reversed the disease and sustained remission indefinitely.

But calcitriol can carry some strong side effects -- it's a "biological sledgehammer" that can raise blood calcium levels in people, Hayes says -- so she tried a third regimen: a single dose of calcitriol, followed by ongoing vitamin D supplements in the diet. This one-two punch "was a runaway success," she says. "One hundred percent of mice responded."

Hayes believes that the calcitriol may cause the autoimmune cells attacking the nerve cells' myelin coating to die, while the vitamin D prevents new autoimmune cells from taking their place.

While she is excited about the prospect of her research helping MS patients someday, Hayes is quick to point out that it's based on a mouse model of disease, not the real thing. Also, while rodents are genetically homogeneous, people are genetically diverse.

"So it's not certain we'll be able to translate (this discovery to humans)," says Hayes. "But I think the chances are good because we have such a broad foundation of data showing protective effects of vitamin D in humans."

The next step is human clinical trials, a step that must be taken by a medical doctor, a neurologist. If the treatment works in people, patients with early symptoms of MS may never need to receive an official diagnosis.

"It's my hope that one day doctors will be able to say, 'We're going to give you an oral calcitriol dose and ramp up the vitamin D in your diet, and then we're going to follow you closely over the next few months. You're just going to have this one neurological episode and that will be the end of it,'" says Hayes. "That's my dream."

Nicole Miller
nemiller2@wisc.edu
608-262-3636

Colleen Hayes | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Perfect optics through light scattering

02.06.2020 | Power and Electrical Engineering

The digital construction site: A smarter way of building with mobile robots

02.06.2020 | Architecture and Construction

Process behind the organ-specific elimination of chromosomes in plants unveiled

02.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>