Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microscope decodes complex eye circuitry

10.03.2011
Retinal ganglion cells can recognise directions thanks to amacrine cells

The properties of optical stimuli need to be conveyed from the eye to the brain. To do this efficiently, the relevant information is extracted by pre-processing in the eye.


Cells and synapses reconstructed from serial block face electron microscopy data. A single starburst amacrine cell (yellow, note synaptic varicosities) and two direction-selective ganglion cells (green). Even though there is substantial dendritic overlap with both cells, all connections (magenta) go to the right ganglion cell. © Kevin Briggman

For example, some of the so-called retinal ganglion cells, which transmit visual information to the brain via the optic nerve, only react to light stimuli moving in a particular direction. This direction selectivity is generated by inhibitory interneurons that influence the activity of the ganglion cells through their synapses. Using a novel microscopy method developed at the Institute, scientists from the Max Planck Institute for Medical Research in Heidelberg have now discovered that the distribution of the synapses between ganglion cells and interneurons follows highly specific rules. Only those dendrites that extend from the cell body of the amacrine cell in a direction opposite to the preferred direction of the ganglion cell connect with the ganglion cell.

The sensory cells in the retina of the mammalian eye convert light stimuli into electrical signals and transmit them via downstream interneurons to the retinal ganglion cells which, in turn, forward them to the brain. The interneurons are connected to each other in such a way that the individual ganglion cells receive visual information from a circular area of the visual field known as the receptive field. Some ganglion cells are only activated, for example, when light falls on the centre of their receptive fields and the edge remains dark (ON cells). The opposite is the case for other ganglion cells (OFF cells). And there are also ganglion cells that are activated by light that sweeps across their receptive fields in a particular direction; motion in the opposite (null-) direction inhibits activation.

Starburst amacrine cells, which modulate the activity of the ganglion cells through inhibitory synaptic connections, play an important role in this direction selectivity. The same research group at the Max Planck Institute in Heidelberg demonstrated a number of years ago that starburst amacrine cells are activated by moving stimuli. Each branch in the circular dendrite tree reacts preferentially to stimuli that move away from the cell body; movements in the opposite direction, towards the cell body, inhibit its activity. In the central area around the cell body dendrites function only as receivers of synaptic signals, while the dendrites on the periphery act as transmitters as well – and, therefore, double as axons. Whether these dendrites cause the direction selectivity in the ganglion cells or whether the ganglion cells “compute” it using other signals was unclear up to now.

Max Planck researchers Kevin Briggman, Moritz Helmstaedter and Winfried Denk have now discovered that, although the cells themselves are symmetrical, the synapses between retinal ganglion cells and starburst amacrine cells are distributed asymmetrically: seen from the ganglion cell, the starburst cell dendrites connected with it run in the direction opposite to the preferred direction of motion. “Ganglion cells prefer amacrine-cell dendrites that run along the null-direction,” says Winfried Denk.

According to previous studies by Winfried Denk and his research group, the electrical characteristics of the dendrites, which emerge starlike from the cell bodies of amacrine cells, play a crucial role here. The further they are located from the centre of the cell toward the edge, the easier they are to excite; therefore, stimuli are transmitted preferentially in this direction. This mechanism does not require but is helped by inhibitory influences between neighbouring amacrine cells, known as lateral inhibition. “A ganglion cell can thus differentiate between movements from different directions simply by making connections with certain starburst amacrine cell dendrites - namely those that prevent activation of the ganglion cell in null-direction through their inhibitory synapses. These are precisely the amacrine cell dendrites that run along this direction,” explains Winfried Denk.

Functional and structural analysis

This discovery was made possible by combining two different microscopy methods. The scientists succeeded, first, in determining the preferred motion direction of the ganglion cells using a two-photon fluorescence microscope. A calcium-sensitive fluorescent dye indicated in response to which stimuli calcium flows into the cells - a process that signals electrical activity in cells.

They then measured the exact trajectory of all of the dendrites of these ganglion cells and those of connected amacrine cells with the help of a new electron microscopy method known as serial block face electron microscopy. This process enabled them to produce a volumetric image by repeatedly scanning the surface of a tissue sample using the electron beam of a scanning electron microscope. A thin “slice” is shaved off the sample surface after each scan is complete, using an extremely sharp diamond knife. These slices are thinner than 25 nanometers, just about one thousandth of the thickness of a human hair.

The high three-dimensional resolution of this method enabled the scientists to trace the fine, densely packed branched dendrites of retinal neurons and clearly identify the synapses between them. The complete automation of the imaging process enables them to record data sets with thousands and even tens of thousands of sections “while on holiday or attending a conference,” says Winfried Denk. “For the first time, minute cell structures can now be viewed at a high resolution in larger chunks of tissue. This procedure will also play an indispensable role in the clarification of the circuit patterns of all regions of the nervous system in the future.”

Contact
Prof. Dr. Winfried Denk
Max Planck Institute for Medical Research, Heidelberg
Phone: +49 6221 486-335
Fax: +49 6221 486-325
Email: denk@mpimf-heidelberg.mpg.de
Publication reference
Kevin L Briggman, Moritz Helmstaedter, Winfried Denk
Wiring specificity in the direction-selectivity circuit of the retina
Nature, March 10 2011

Prof. Dr. Winfried Denk | EurekAlert!
Further information:
http://www.mpg.de
http://www.mpg.de/1200127/direction_selective_ganglion_cells

More articles from Health and Medicine:

nachricht New 3D cultured cells mimic the progress of NASH
02.04.2020 | Tokyo University of Agriculture and Technology

nachricht Geneticists are bringing personal medicine closer to recently admixed individuals
02.04.2020 | Estonian Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

Doubts about basic assumption for the universe

08.04.2020 | Physics and Astronomy

Accelerating AI Together – DFKI Welcomes NVIDIA as Newest Shareholder

08.04.2020 | Information Technology

Ear’s inner secrets revealed with new technology

08.04.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>