Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical researchers ID potential new drug target that could stop debilitating effects of MS

27.10.2011
Medical researchers at the University of Alberta have discovered a potential new drug target for Multiple Sclerosis that could prevent physical disability associated with the disease, once a new drug is developed.

In the first phase of MS, those with the condition have lots of inflammation of their brain cells, resulting in continuous cycles of inflammation attacks followed by recovery periods. In the second phase of the disease, the inflammation isn't as severe, but this is the stage where physical disability sets in due to the effects from substantial numbers of brain cells being killed in the first phase of the disease.

When immune cells become active due to inflammation, they can pass through the blood-brain barrier and enter the central nervous system. Some of these activated immune cells secrete a molecule, known as granzyme B, that can get inside neurons and wreak havoc – ultimately causing brain cell death. Granzyme B is found in MS brain lesions – especially in the early stages of inflammation. This molecule can get into brain cells through a "gatekeeper," known as receptor M6PR.

Researchers with the Faculty of Medicine & Dentistry discovered in lab experiments that if they prevent this granzyme B from entering neurons, "we can also prevent the killing of neurons," says principal investigator Fabrizio Giuliani, whose work was recently published in the peer-reviewed publication, The Journal of Immunology.

"It is this loss of brain cells, in the long-term, which induces disability in those with MS," he says. "This is a new drug target for MS that is specific for the neurodegenerative processes following inflammation."

Giuliani, a researcher in the Division of Neurology and a practising neurologist, noted this latest research builds on previous findings by his colleagues within the faculty. Medical researcher and co-author Chris Bleackley made an earlier discovery about how granzyme B enters target cells through the receptor M6PR. Another faculty researcher discovered that the M6PR receptor is found mostly in neurons.

"We were just connecting the dots and said: 'OK, if this receptor is expressed in neurons specifically and not expressed in other cells, is it possible that this is the mechanism that allows this granzyme B to get into human neurons and start killing brain cells? What we found out is yes, this death receptor allows this specific molecule to get in. If you block the receptor, you also block the neurotoxic effect in neurons. This is an excellent example of collaboration with other researchers and translational research."

Many existing MS treatments primarily target brain inflammation, which is very effective in the first phase of the disease but not as helpful once patients reach the second phase. Giuliani says what is needed are new medications that can either repair inflamed brain cells or prevent brain degeneration in the first place. This newly discovered drug target could open the door to new medications that do just that – prevent brain cell death in the early stages of the disease.

Giuliani adds that with this drug target, only a specific function of a cell would be blocked, not multiple functions of a cell. Many medications currently on the market block multiple functions of a specific type of cell. "We are blocking a specific function, not multiple pathways and eventually this strategy could reduce the side effects of new drugs," he notes.

Giuliani and his fellow researchers are continuing their work in this area.

This research was supported through funding by the MS Society of Canada, the Canadian Institutes of Health Research, Alberta Innovates-Health Solutions and the University of Alberta Hospital Foundation.

Raquel Maurier | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Health and Medicine:

nachricht Study shows novel protein plays role in bacterial vaginosis
13.12.2019 | University of Arizona Health Sciences

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>