Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical diagnostics: Identifying viruses on the spot

19.07.2012
A simple new method of extracting viral RNA from blood samples allows quick, on-the-spot identification of dengue fever in patients
Dengue fever is a disease passed to humans by mosquitoes. Millions of people every year are infected worldwide, and around 4,000–5,000 of these cases will suffer severe complications or death. Dengue fever most commonly affects young people between the ages of 15 and 24.

Currently, doctors identify dengue fever by clinical observations followed by a series of laboratory tests of blood and urine samples. These tests can take seven to ten days to complete, and require highly skilled staff and specialist equipment. Due to the complexity of the process, there is also a chance of cross-contamination during the procedure.

For these reasons, researchers are keen to develop quicker, more accurate ways of identifying viruses such as dengue fever. Siti Mohamed Rafei and co-workers at A*STAR’s Institute of Microelectronics, together with scientists from Veredus Laboratories in Singapore and the National University of Singapore, have designed and built a new self-contained microsystem that can ascertain the presence of dengue fever in blood samples within 30 minutes. Crucially, the new cartridge can be operated by non-skilled staff.

The microsystem works by extracting viral RNA from patients’ blood samples. Using a silicon-based viral extraction chip, and a cartridge containing reservoirs pre-filled with the different reagents required to extract viral RNA, the microsystem is fully self-contained.

In conventional virus detection systems, the chance of cross contamination is high because the extraction process requires extensive manual pipetting of reagents. In the newly designed system, the silicon chip is embedded in a polymeric cartridge that allows the user to preload all necessary reagents, making it fully self-contained and disposable. This added feature is extremely useful for testing infectious disease that might be highly virulent or contagious.

The cartridge is placed inside a handheld computer device with a touch screen. Pressing the start button operates a pre-determined series of plungers, which release the reagents into the silicon chip containing the blood sample. The reagents allow for the extraction of viral RNA and virus identification readout within 30 minutes.

The sequence of plungers and their speed are fully computer-controlled, thus the cartridge is configurable, user-friendly and does not require specialist knowledge to operate. In addition, the cartridge is adaptable to multiple biochemical protocols, not just to the viral RNA for dengue fever as described here. In future, the researchers hope to identify many infectious diseases with this technology.
The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

References:
Zhang, L. et al. A self-contained disposable cartridge microsystem for dengue viral ribonucleic acid extraction. Sensors and Actuators B: Chemical 160, 1557–1564 (2011).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>