Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

La Jolla Institute identifies new therapeutic target for asthma, COPD and other lung disorders

18.04.2011
Finding marks scientist's second major discovery with therapeutic potential for asthma

Michael Croft, Ph.D., a researcher at the La Jolla Institute for Allergy & Immunology, has discovered a molecule's previously unknown role as a major trigger for airway remodeling, which impairs lung function, making the molecule a promising therapeutic target for chronic asthma, chronic obstructive pulmonary disease (COPD) and several other lung conditions. A scientific paper on Dr. Croft's finding was published online today in the prestigious journal, Nature Medicine.

The finding marks Dr. Croft's second major discovery with therapeutic potential for asthma. His previous finding, of a novel molecular mechanism driving lung inflammation, is the basis for a potential asthma treatment now in Phase II human clinical trials.

"Dr. Croft's continued efforts to uncover the cellular pathways influencing asthma and other lung disorders have produced remarkable results," said Mitchell Kronenberg, Ph.D., La Jolla Institute president and chief scientific officer. "He is a researcher of the highest caliber and I believe his discoveries will someday improve the lives of millions of people around the world."

In his Nature Medicine paper entitled, "The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling," Dr. Croft showed that blocking LIGHT's interactions with its two receptors significantly inhibited the process of airway remodeling in mouse models of chronic asthma. Airway remodeling refers to inflammation-fueled structural changes in the lungs, including fibrosis, which can occur over time and result in declining lung function that strongly contributes to conditions such as COPD, chronic asthma, and several other respiratory disorders.

Asthma affects more than 20 million Americans, including nine million children, and is the third-ranking cause of hospitalization among U.S. children under age 15. According to federal officials, asthma results in $14 billion annually in U.S. health care costs. COPD is one of the most common lung diseases and comes in two main forms, chronic bronchitis and emphysema. More than 12 million Americans have been diagnosed with COPD, which is a major cause of disability and the fourth leading cause of death in the United States.

Current therapies for asthma and COPD primarily include corticosteroids, bronchodilators, and leukotriene antagonists, but these are thought to have little impact, if any, on airway remodeling, said Dr. Croft.

Dr. Croft said emerging data on the role of the tumor necrosis factor (TNF) super family of molecules in fueling inflammatory diseases, including his own finding on OX40 Ligand and its receptor's action in triggering inflammation in asthma, prompted him to take a close look at fellow TNF molecule, LIGHT. "We hypothesized that LIGHT might be involved in driving aspects of lung inflammation or have a role in lung dysfunction that was different than our previous findings on OX40L," he said. "As we were undertaking our studies, a report found that increased sputum LIGHT levels in people with asthma correlated with decreased lung function, which was in line with our thinking."

Using two mouse models of chronic asthma and a therapeutic blocking strategy, Dr. Croft said he and his team "demonstrated a direct role for LIGHT in promoting and controlling the extent of remodeling in the lung."

In a related finding, published March 14 in the Journal of Experimental Medicine, Dr. Croft also showed a connection between LIGHT and T cell-fueled inflammation that contributes to other aspects of asthmatic disease. "We showed that blocking LIGHT binding to one of its receptors, named the herpesvirus entry mediator, reduced the ability of T lymphocytes, induced with a model allergen, to survive long-term. This strongly curtailed lung inflammation associated with asthma when the allergen was subsequently inhaled," he said. The findings were detailed in a scientific paper entitled, "Herpesvirus entry mediator (TNFRSF14) regulates the persistence of T helper memory cell populations."

Dr. Croft said he is excited about his findings on LIGHT and its impact on both airway remodeling and inflammation in asthma. "Identifying these molecules (LIGHT and its receptors) as regulators of processes associated with several lung diseases may be an important advantage in efforts to develop new and better therapies," he said.

LIGHT was initially discovered in 1998 by former La Jolla Institute scientist Carl Ware, Ph.D. The TNF family of molecules has proven to be important players in inflammation-driven autoimmune diseases and is a particular focus of the La Jolla Institute.

"The fact that LIGHT appears to be important in Crohn's disease and colitis, and now may have an indication in asthma, is a continued demonstration of the TNF family's critical role in inflammatory diseases," said Dr. Kronenberg. "We are thrilled that both of these findings originated from our Institute. It is a reflection that our Institute is one of the world's leaders in TNF research, which is a hotbed of therapeutic potential for autoimmune diseases."

About La Jolla Institute

Founded in 1988, the La Jolla Institute for Allergy & Immunology is a biomedical research nonprofit focused on improving human health through increased understanding of the immune system. Its scientists carry out research seeking new knowledge leading to the prevention of disease through vaccines and the treatment and cure of infectious diseases, cancer and autoimmune diseases such as rheumatoid arthritis, type 1 (juvenile) diabetes, Crohn's disease and asthma. La Jolla Institute's research staff includes more than 100 Ph.D.s and M.D.s. For more information, go to www.liai.org

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>