Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Invention Could Improve Treatment for Children with "Water on the Brain"

27.09.2010
Researchers create device to find ways to improve commonly used hydrocephalus treatment

Van Andel Research Institute (VARI) scientists participated in a study with researchers from the University of Utah that could help find ways to improve shunt systems used to treat the neurological disorder hydrocephalus, or “water on the brain,” the leading cause of brain surgery for children in the United States. Researchers studied the shunt systems under a variety of conditions by creating a bioreactor that mimics the environment inside patients.

Hydrocephalus is an excessive accumulation of cerebrospinal fluid (CSF) in the brain and is one of the most common birth defects, affecting approximately one in 500 children every year. Another 6,000 children annually develop hydrocephalus during the first two years of life. The pressure created by too much CSF can affect mental ability, balance, personality, and vision, result in headaches and seizures, and even lead to death.

“This paper is a very valuable contribution to the field of hydrocephalus research,” said Pat McAllister, Ph.D., Professor and Director of Basic Hydrocephalus Research and Adjunct Professor of Physiology and Bioengineering at University of Utah School of Medicine. “Tragically, practically all patients with hydrocephalus are at risk for shunt malfunctions, which invariably produce more brain injury, and most of these patients must undergo multiple surgeries to remove obstructed catheters. These studies represent significant advancements in our attempts to prevent cells from blocking shunt catheters, and we look forward to continuing our work with Dr. Resau and his colleagues.”

Hydrocephalus is typically treated by implanting shunt systems in the brain that can divert the flow of CSF to other areas of the body where it can be absorbed into the circulatory system. However, complications due to blockage occur in up to 61% of patients, and an estimated 50% of shunts need to be replaced within two years. University of Utah researcher Carolyn Harris, a Ph.D. candidate in bioengineering, designed the hydrocephalus shunt catheter bioreactor to study shunt systems under a variety of conditions to find ways to improve the treatment.

The bioreactor mimics the conditions inside the patient’s body more closely than growing cells in a Petri dish. Cells suspended in fluid are pumped through tubing connected to catheters used in shunt systems, oriented both horizontally and vertically. Researchers can study and control factors such as flow rate, pressure changes, and pulsation frequency, which can vary from patient to patient, and determine how each affects cells’ adhesion to the catheters.

VARI researchers provided imaging and flow cytometry to determine the number of cells that adhered to the catheters and the characteristics of those cells.

“This project grew out of a collaboration to see if we could develop a material that would resist the growth of cells,” said VARI Distinguished Scientific Investigator Jim Resau, Ph.D., one of the authors of the study. “So actually our part was to image and quantify the effect of certain components to inhibit the build-up of scar-like cells. This approach could also be applied to other instruments inserted into the body, such as electrodes.”

This project was supported by the Division of Pediatric Neurosurgery at the University of Utah School of Medicine, Van Andel Research Institute, and STARS-kids (Seeking Techniques Advancing Research in Shunts).

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona.

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

Further reports about: Andel Brain CSF Cancer treatment Medicine Utah VARI birth defect invention

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>