Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation: Attack is not always the best defense

27.05.2014

Pharmacists at Jena University develop three new drug candidates against inflammation

It is something like the police force of our body: the immune system. It disables intruding pathogens, it dismantles injured tissue and boosts wound healing. In this form of 'self-defense' inflammatory reactions play a decisive role.


Pharmacists at Jena University search for new drugs against inflammation.

photo: Jan-Peter Kasper/FSU

But sometimes the body’s defense mechanism gets out of control and cells or tissues are affected: “Then excessive reactions can occur and illnesses along with them,” Prof. Dr. Oliver Werz of the Friedrich Schiller University Jena says. He gives asthma, rheumatism, arteriosclerosis and cancer as examples: “For many of these diseases there are only few effective therapies without severe side effects.”

But the team of researchers working together with the Jena pharmacist has now developed three active agents which may be able to improve the healing of inflammatory illnesses better in future. The scientists present the potential therapeutic agents in renowned scientific journals. The agents are able to suppress a key enzyme in the body’s own cascade of inflammation.

“The enzyme called 5-LOX plays a pivotal role in the synthesis of so-called leukotrienes, which are part of numerous immunological and inflammatory processes,” Prof. Werz explains. Hence, the effort to prevent the synthesis of leukotrienes has been the focus of international research for inflammatory therapy for a long time. “Thousands of publications on the subject have emerged in the last 30 years,” says Werz. But apart from one exception none of these efforts have made it to the stage of an approved medication. Either the efficacy of the substances was poor or they were accompanied by unwanted side effects.

As a reason behind this, the Jena pharmacist sees the insufficient understanding of cellular regulation of the leukotriene biosynthesis and the lack of knowledge of the molecular mechanisms of agent and target molecule. “Instead of testing a number of substances to see if one of them might show any activity, we took a close look at 5-LOX and tried to find where exactly this enzyme is vulnerable and what the agents, which can interact with our target molecule, should look like," Werz describes the basis-orientated approach.

In this way the scientists of the Jena University together with partners from Austria, Italy, Turkey and Greece, were able to identify three possible agents. So for instance, a so-called benzoquinone proved to be an effective inhibitor of the 5-LOX. This is a substance which is derived from the natural product embelin from the "False Black Pepper“-plant (Embelia ribes). The pharmacists were able to show that this substance fits exactly into the active center of the enzyme and thus blocks its function. “This specifically only happens with 5-LOX," Werz says and stresses that benzoquinone may practically show no side effects.

A related substance of the red-violet natural dye indirubin, called 6-BIO, proved to be similarly promising. For this substance, the Jena researchers were able to clarify the mechanism of action as well: the 6-BIO inhibits the enzyme 5-LOX by blocking receptor sites for other molecules which are necessary for it to work properly. “In addition, 6-BIO also intervenes with the synthesis of additional inflammatory factors – the cytokines implying additional synergistic effects." This is why 6-BIO could for instance be of interest for the therapy of Alzheimer’s disease, in which cytokines are also playing a role.

The third possible active agent from the Jena University’s laboratory does not inhibit the 5-LOX itself, but it deactivates a helper-protein, which the enzyme needs for its effectiveness within the cell. The researchers identified this active agent, a benzimidazole with the short term BRP-7, by a virtual screening in a library consisting of nearly three million substances. "From our point of view all three of the drug candidates are very well suited to a further development as medications,” Prof. Werz summarizes. However, for this, the support of the pharmceutical industry is needed.

Original Publications:
Schaible AM et al. Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1,4-benzoquinone that inhibits 5-lipoxygenase. British Journal of Pharmacology 2014 (DOI:10.1111/bph.12592)
Pergola C et al. Indirubin core structure of glycogen synthase kinase-3 inhibitors as novel chemotype for intervention with 5-lipoxygenase. Journal of Medical Chemistry 2014 (DOI:10.1021/jm401740w)
Pergola C et al. The novel benzimidazole derivative BRP-7 inhibits leukotriene biosynthesis in vitro and in vivo by targeting 5-lipoxygenase-activating protein (FLAP). British Journal of Pharmacology 2014 (DOI:10.1111/bph.12625)

Contact:
Prof. Dr. Oliver Werz
Institute of Pharmacy
Friedrich Schiller University Jena
Philosophenweg 14, 07743 Jena
Germany
Phone: ++49 3641 / 949801
Email: oliver.werz[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: DOI Pergola cytokines effective efficacy enzyme inflammatory natural reactions substances synthesis

More articles from Health and Medicine:

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>