Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to turn white fat brown

07.12.2016

Penn scientists discover a molecular trigger of fat-cell 'browning' program, which could lead to better treatments for obesity and diabetes

A signaling pathway in fat cells may one day provide the key to better treatments for obesity, according to new research by scientists in the Perelman School of Medicine at the University of Pennsylvania. They reported their findings online ahead of print in Genes & Development.


This image shows adipose tissue, with fat droplets in green and blood vessels in red.

Credit: The laboratory of Zoltan Arany, MD, PhD, Perelman School of Medicine, University of Pennsylvania

Ordinary fat cells, also called white adipocytes, stuff themselves with fat molecules to store up energy, and their overloading leads to obesity and related conditions, including diabetes. Brown adipocytes, which are prevalent in children as "baby fat," but much less so in adults, do virtually the opposite: they burn energy rapidly to generate heat, and thereby protect the body from cold as well as obesity and diabetes.

The signaling pathway discovered by the Penn scientists activates a "browning program" in white adipocytes, making them more like energy-burning brown adipocytes.

"It's conceivable that one would be able to target this pathway with a drug, to push white fat to become brown fat and thereby treat obesity," said the study's senior author Zoltan P. Arany, MD, PhD, an associate professor of Cardiovascular Medicine. About 36 percent of American adults are considered obese and nearly 10 percent have type 2 diabetes.

Arany and colleagues found that the browning program in white adipocytes is normally suppressed by a protein called FLCN. It performs this function in cooperation with a major cellular signaling hub, a protein complex known as mTOR. The FLCN-mTOR interaction keeps the browning program switched off by preventing a protein called TFE3 from entering the cell nucleus.

The scientists showed that deleting the FLCN gene in the white adipocytes of mice allows TFE3 to migrate into the nucleus, where it binds to DNA and activates a key regulator of cellular metabolism called PGC-1β. It then turns on the set of genes for the browning program.

In the mice in which FLCN was deleted, white adipocytes became visibly browner as they produced more mitochondria--tiny, oxygen reactors that supply chemical energy within cells and convert energy to heat in brown adipocytes. In several other ways too, including their altered cellular structures, mitochondria's higher capacity for consuming oxygen, and their distinctive pattern of gene expression, the cells became more like brown adipocytes.

Arany and his team showed that they could reproduce this browning effect merely by forcing the overexpression of PGC-1β in the white adipocytes of mice. "In principle, a drug that boosts the activity of PGC-1β or some of its target genes might serve as a therapeutic activator of the browning program to curb obesity and treat or prevent diabetes," Arany said.

Aside from its potential medical relevance, the discovery is an important advance in understanding cell biology. "Cellular metabolism is regulated by major signaling pathways and with this study we're linking two of these major pathways, the mTOR and the PGC-1 pathways," Arany said. "The connection between them hasn't been well understood, but here we're clarifying it significantly."

Arany and his team plan further studies of the pathway and its relation to other mTOR signaling pathways.

###

Co-authors of the study include first author Shogo Wada, and Michael Neinast, Cholsoon Jang, Apoorva Babu, Jian Li, Atsushi Hoshino, Michael Morley, Joseph A. Baur, and Patrick Seale, all of Penn; Yasir H. Ibrahim, Gina Lee, and John Blenis of the Weill Cornell School of Medicine; José A. Martina and Rosa Puertollano of the National Heart, Lung and Blood Institute; Glenn C. Rowe of the University of Alabama; and James Rhee of Massachusetts General Hospital.

The study was supported by grants from the National Institutes of Health (T32GM007592, GM51405, HL121266, DK098656, AG043483, DK107667, HL094499).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania(founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $5.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 18 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $373 million awarded in the 2015 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2015, Penn Medicine provided $253.3 million to benefit our community.

Karen Kreeger | EurekAlert!

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>