Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How small molecule halts spread of toxic protein associated with Alzheimer's progression

03.05.2018

UCLA research could help lead to design of drugs that slow neurodegeneration


Model of cambinol (yellow) binding to nSMase2 shown with electrostatic potential. Blue for positive charge, red for negative charge, and white is for neutral charge.

Credit: UCLA Drug Discovery and Translational Lab

Alzheimer's disease destroys brain cells in part by promoting the formation of insoluble clumps that contain a protein called tau. Not only are these "tau aggregates" toxic for the cells that harbor them, but they also invade and destroy neighboring brain cells, or neurons, which speeds the cognitive decline associated with the Alzheimer's.

For those reasons, Alzheimer's researchers have been intensely interested in therapies aimed at either preventing tau aggregation or blocking its spread.

Now, researchers at the UCLA School of Nursing and the department of neurology at the David Geffen School of Medicine at UCLA have reported a promising drug strategy that blocks tau transmission. The study was published online in the journal Biochemical and Biophysical Research Communications.

Using cultured cells, mouse models and protein structural analysis, the researchers found that a small molecule called cambinol blocks the transfer of tau aggregates from cell to cell. The study could help lay the groundwork for therapies to treat Alzheimer's or other dementias associated with the accumulation of tau.

"Over 200 molecules have been tested as disease-modifying Alzheimer's therapy in clinical trials, and none has yet attained the holy grail," said Varghese John, a UCLA associate professor of neurology and the study's senior author. "Our paper describes a novel approach to slow Alzheimer's progression by showing it is possible to inhibit propagation of pathologic forms of tau."

John is a member of the UCLA Easton Center for Alzheimer's Disease Research and leads the Drug Discovery and Translational lab.

In healthy people, tau proteins are benign building blocks of a neuron's framework, or cytoskeleton. But in Alzheimer's disease, tau proteins fall away from the cytoskeleton, become abnormally modified, and then form insoluble "neurofibrillary tangles" that destroy cells. To make matters worse, dying cells encase tau aggregates in lipid vesicles called exosomes, which then bud off and "seed" neighboring tissues, keeping the destructive cycle going.

The researchers conducted several experiments that suggest that cambinol can subvert the "transfer" step by blocking an enzyme called nSMase2, which is essential for catalyzing production of the exosome carriers. In one, the scientists used "donor cells" that harbored tau aggregates derived from postmortem human Alzheimer's specimens and mixed them with tau-free recipient cells.

Without cambinol, the aggregates spread from donors to recipients, mirroring what happens in the brains of people with Alzheimer's. But when treated with cambinol, recipient cells remained tau-free when grown side by side with tau-positive donors, presumably because the drug disabled nSMase2 activity blocking release of the tau-carrying exosomes.

The researchers also observed decreased nSMase2 catalytic activity in the brains of mice that were given cambinol orally. John said the seemingly routine experiment was an essential first step. "Getting molecules into the brain is a big hurdle, because most drugs don't penetrate the blood-brain barrier," he said, referring to the membranes that surround the central nervous system and keep drugs out of it. "Now we know we can treat animals with cambinol to determine its effect on Alzheimer's pathology and progression."

The paper is the first to report on a model of how cambinol switches off nSMase2 catalytic activity at the atomic level, and it provides critical knowledge for medicinal chemists like John to begin designing new drugs based on cambinol that are more potent and efficacious than the molecule itself. That work is already being done in collaboration with Neil Garg, a UCLA professor of chemistry and biochemistry. If the approach is successful in animals, it could be tested in clinical trials.

"Understanding pathways is the first step to new drug targets," said Karen Gylys, a UCLA professor of nursing and a co-author of the study. "With cambinol in hand, we have a useful tool for understanding cellular pathways that enable the spread of tau pathology."

###

UCLA's Tina Bilousova is the study's lead author. Other authors, all of UCLA, are Chris Elias, Emily Miyoshi, Mohammad-Parvez Alam, Chunni Zhu, Jesus Campagna, Kanagasabai Vadivel and Barbara Jagodzinska.

The study was supported by grants from the National Institute of Aging and the UCLA Department of Neurology.

Media Contact

Laura Perry
lperry@sonnet.ucla.edu
818-212-6226

 @uclahealth

http://www.uclahealth.org/ 

Laura Perry | EurekAlert!
Further information:
http://ucla.in/2FBm24Q
http://dx.doi.org/10.1016/j.bbrc.2018.03.209

Further reports about: UCLA aggregates brain cells catalytic activity drugs toxic protein

More articles from Health and Medicine:

nachricht Novel anti-cancer nanomedicine for efficient chemotherapy
17.09.2019 | University of Helsinki

nachricht Researchers have identified areas of the retina that change in mild Alzheimer's disease
16.09.2019 | Universidad Complutense de Madrid

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>