Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Liver Cancer Develops

12.09.2017

Researchers at the University of Zurich and the University Hospital Zurich have discovered a major mechanism in the development of liver cancer. In chronic liver diseases, damaged cells die off and are replaced by new ones over a period of years. As time goes on, DNA damage accumulates, furthering the development of cancer. The caspase-8 enzyme plays an important dual role in this process.

Liver cancer is the second-leading cause of cancer-related death and represents the fastest rising cancer worldwide. In most cases, the tumor develops in patients with chronic liver disease. Such diseases include chronic infections with hepatitis viruses or a so-called fatty liver due to nutritional or genetically caused lipometabolic disorders or an excessive consumption of alcohol.


Mikroskopisches Bild einer Mausleber mit durch Apoptose sterbenden Leberzellen (Pfeilköpfe) und sich teilenden Zellen (im Kreis), die das Gewebe regenerieren.

USZ

An international team of researchers headed up by UZH Professor Achim Weber from the Institute of Pathology and Molecular Pathology of the University Hospital Zurich and Mathias Heikenwälder, professor at the German Cancer Research Center in Heidelberg, Germany, has discovered a major mechanism in the development of liver cancer. One of the main players in this process is enzyme caspase-8, which assumes an important dual role.

Short-term protection at the price of long-term development of cancer

This protein is therefore jointly responsible for triggering programmed cell death, apoptosis, in diseased liver cells. If the liver is permanently damaged, increased activation of cell death in hepatocytes occurs first, as the scientists demonstrated using patient samples and various mouse models. In reaction, the liver cells divide faster to regenerate the tissue. This causes lasting stress: Over a period of years, damaged liver cells die off and new ones grow in their place.

Since the hereditary material doubles at each cell division, more and more errors are constantly stealing into the DNA. The rising number of mutations leads to genetic instability and increases the probability that a liver cell will become a tumor cell. Ultimately, the chronically increased cell death activity results in the development of liver cancer. The elimination of damaged cancer cells, while sensible in itself, therefore raises the risk of tumors in the long term. “We have observed this mechanism in all the various liver diseases and examined mouse models – it appears to be remarkably universal,” Weber adds.

Enzyme caspase-8 has an important dual function

In their investigation, the researchers discovered an important second function of caspase-8: In a complex with additional proteins, the enzyme detects DNA damage in the remaining liver cells and initiates their repair. This reveals another mechanism by means of which caspase-8 protects liver cells. For Achim Weber, these results are relevant not only for basic research: “Our results have important implications for the clinic – for the treatment of patients with chronic liver diseases on the one hand and for the application of cancer medications that induce cell death on the other.”

Literature:
Yannick Boege et. al. A dual role of caspase 8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development. Cancer Cell, September 11, 2017. DOI: 10.1016/j.ccell.2017.08.010

Contact:
Prof. Achim Weber, MD
Institute of Pathology and Molecular Pathology
University Hospital Zurich
Phone + 41 44 255 27 81
E-mail: achim.weber@usz.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2017/liver-cancer-development.html

Kurt Bodenmüller | Universität Zürich

Further reports about: CANCER DNA DNA damage Pathology cell death enzyme liver cancer liver cells liver diseases mouse models

More articles from Health and Medicine:

nachricht The cytoskeleton of neurons has been found to be involved in Alzheimer's disease
18.01.2019 | University of the Basque Country

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>