Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut check: Metabolites shed by intestinal microbiota keep inflammation at bay

07.05.2018

Researchers find inflammatory response in fatty liver disease is reduced by two tryptophan metabolites from gut bacteria

Researchers at Tufts University have elucidated a mechanism by which the "good" bacteria that reside in our gastrointestinal tract can help protect us from inflammation, and how their disruption (dysbiosis) can increase the susceptibility of the liver to more harmful forms of disease. Their study, now available in the journal Cell Reports, identified two key metabolites produced by the bacteria in mice that modulate inflammation in the host and could ultimately reduce the severity of non-alcoholic fatty liver disease.


Intestinal microbes convert tryptophan to metabolites that protect against host inflammation.

Credit: Tufts University

Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition in Western countries, affecting up to 25 percent of adults, tracking along with trends in obesity and diabetes. The severity of symptoms can vary, ranging from simple steatosis, which is benign and asymptomatic, to non-alcoholic steatohepatitis (NASH), which is characterized by liver inflammation, swelling and fibrosis and can lead to cirrhosis and liver cancer.

People who eat a high fat diet are more susceptible to NAFLD. Replicating that diet in mice, the researchers found that within just a few weeks, their intestinal microbiota changed character significantly, with some species of bacteria increasing and others decreasing. At the same time, an inventory of metabolites in the mouse's GI tract, serum and liver showed some metabolites known to be linked to intestinal microbiota to shift compared to mice on a low-fat diet. Three of those metabolites - tryptamine (TA), indole-3-acetate (I3A), and xanthurenic acid - were significantly depleted in high fat diet mice.

"That's bad news for the liver," said Kyongbum Lee, Ph.D., professor of chemical and biological engineering at the School of Engineering at Tufts. "We demonstrated that two of these metabolites - I3A and TA - attenuate the effects of inflammation in several ways. Their depletion clears the way for disease to progress toward more serious stages."

Some of those effects of I3A and TA include reducing the level of inflammation-inducing molecules (known as cytokines) like tumor necrosis factor alpha, interleukin-1-beta, and monocyte chemoattractant protein. The latter acts as an attractant for macrophages, which in turn produce more cytokines. All of these inflammatory agents are triggered by high levels of free fatty acid accumulation in the serum and liver - the hallmark of NAFLD, and the consequence of an unhealthy high fat diet.

Researchers also considered whether I3A and TA could be added back to the gut to help treat those with the more serious inflammatory stages of NAFLD. However, it was determined that high levels of TA are toxic. "Our focus now is on I3A, where we will be exploring whether I3A or other microbiota metabolites can change the course of disease," said Lee.

###

Other contributing authors include Smitha Krishnan, Maria Choi, and Gautham Sridharan of the Tufts Department of Chemical and Biological Engineering, Nima Saedi and Martin Yarmush of the Center for Engineering in Medicine at Massachusetts General Hospital, David Sherr of the Boston University School of Public Health, and Robert Alaniz of Texas A&M University College of Medicine, and Yufan Ding and Arul Jayaraman of Texas A&M University Department of Biomedical Engineering.

The work was supported by the National Science Foundation (12645502, 1337760, 0821381) and the National Institute of Medical Sciences (GM106251).

Krishnan, S., Ding, Y., Saedi, N., Choi, M., Sridharan, G.V., Sherr D.H., Yarmush M.L., Alaniz R.C., Jayaraman A., Lee K. "IGut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages," Cell Reports, (April 24, 2018) 23:1-13. DOI: 10.1016/j.celrep.2018.03.109

About Tufts University

Tufts University, located on campuses in Boston, Medford/Somerville and Grafton, Massachusetts, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Media Contact

Mike Silver
mike.silver@tufts.edu
617-627-0545

 @TuftsUniversity

http://www.tufts.edu 

 

Mike Silver | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.celrep.2018.03.109

Further reports about: NAFLD fatty liver inflammation liver metabolites microbiota

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>