Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut check: Metabolites shed by intestinal microbiota keep inflammation at bay

07.05.2018

Researchers find inflammatory response in fatty liver disease is reduced by two tryptophan metabolites from gut bacteria

Researchers at Tufts University have elucidated a mechanism by which the "good" bacteria that reside in our gastrointestinal tract can help protect us from inflammation, and how their disruption (dysbiosis) can increase the susceptibility of the liver to more harmful forms of disease. Their study, now available in the journal Cell Reports, identified two key metabolites produced by the bacteria in mice that modulate inflammation in the host and could ultimately reduce the severity of non-alcoholic fatty liver disease.


Intestinal microbes convert tryptophan to metabolites that protect against host inflammation.

Credit: Tufts University

Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition in Western countries, affecting up to 25 percent of adults, tracking along with trends in obesity and diabetes. The severity of symptoms can vary, ranging from simple steatosis, which is benign and asymptomatic, to non-alcoholic steatohepatitis (NASH), which is characterized by liver inflammation, swelling and fibrosis and can lead to cirrhosis and liver cancer.

People who eat a high fat diet are more susceptible to NAFLD. Replicating that diet in mice, the researchers found that within just a few weeks, their intestinal microbiota changed character significantly, with some species of bacteria increasing and others decreasing. At the same time, an inventory of metabolites in the mouse's GI tract, serum and liver showed some metabolites known to be linked to intestinal microbiota to shift compared to mice on a low-fat diet. Three of those metabolites - tryptamine (TA), indole-3-acetate (I3A), and xanthurenic acid - were significantly depleted in high fat diet mice.

"That's bad news for the liver," said Kyongbum Lee, Ph.D., professor of chemical and biological engineering at the School of Engineering at Tufts. "We demonstrated that two of these metabolites - I3A and TA - attenuate the effects of inflammation in several ways. Their depletion clears the way for disease to progress toward more serious stages."

Some of those effects of I3A and TA include reducing the level of inflammation-inducing molecules (known as cytokines) like tumor necrosis factor alpha, interleukin-1-beta, and monocyte chemoattractant protein. The latter acts as an attractant for macrophages, which in turn produce more cytokines. All of these inflammatory agents are triggered by high levels of free fatty acid accumulation in the serum and liver - the hallmark of NAFLD, and the consequence of an unhealthy high fat diet.

Researchers also considered whether I3A and TA could be added back to the gut to help treat those with the more serious inflammatory stages of NAFLD. However, it was determined that high levels of TA are toxic. "Our focus now is on I3A, where we will be exploring whether I3A or other microbiota metabolites can change the course of disease," said Lee.

###

Other contributing authors include Smitha Krishnan, Maria Choi, and Gautham Sridharan of the Tufts Department of Chemical and Biological Engineering, Nima Saedi and Martin Yarmush of the Center for Engineering in Medicine at Massachusetts General Hospital, David Sherr of the Boston University School of Public Health, and Robert Alaniz of Texas A&M University College of Medicine, and Yufan Ding and Arul Jayaraman of Texas A&M University Department of Biomedical Engineering.

The work was supported by the National Science Foundation (12645502, 1337760, 0821381) and the National Institute of Medical Sciences (GM106251).

Krishnan, S., Ding, Y., Saedi, N., Choi, M., Sridharan, G.V., Sherr D.H., Yarmush M.L., Alaniz R.C., Jayaraman A., Lee K. "IGut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages," Cell Reports, (April 24, 2018) 23:1-13. DOI: 10.1016/j.celrep.2018.03.109

About Tufts University

Tufts University, located on campuses in Boston, Medford/Somerville and Grafton, Massachusetts, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Media Contact

Mike Silver
mike.silver@tufts.edu
617-627-0545

 @TuftsUniversity

http://www.tufts.edu 

 

Mike Silver | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.celrep.2018.03.109

Further reports about: NAFLD fatty liver inflammation liver metabolites microbiota

More articles from Health and Medicine:

nachricht Researchers find new potential approach to type 2 diabetes treatment
11.11.2019 | Weill Cornell Medicine

nachricht Why beta-blockers cause skin inflammation
07.11.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

How the Zika virus can spread

11.11.2019 | Life Sciences

Researchers find new potential approach to type 2 diabetes treatment

11.11.2019 | Health and Medicine

Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction

11.11.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>