Why do we feel jet-lag?

Human biochemical processes are controlled by internal body clocks with an approximately 24 h period—circadian rhythms.

In mammals, the suprachiasmatic nucleus (SCN) contains self-sustained circadian oscillator as master pacemakers. The expression of clock gene Period1 (Per1) oscillates autonomously in the SCN and is induced immediately after a light pulse.

Per1 is an indispensable member of the central clock system, since the constitutive expression of Per1 in the SCN modifies physiological and behavioral rhythms [1]. The SCN and peripheral tissues are compared about the ability of phase shift using realtime monitoring system from same animal.

Now, Shin Yamazaki, Rika Numano, Michikazu Abe and colleagues at University of Virginia and University of Tokyo constructed Per1:luc Tg rats in which firefly luciferase was rhythmically expressed under the control of the mouse Per1 promoter [2].

Rhythmic emission from the cultured Per1:luc SCN slices persisted for some months in vitro, while those from peripheral tissues such as the liver damped after two to seven cycles. These results show that a self-sustained circadian pacemaker in the SCN entrains circadian oscillators in the periphery.

Next, the researchers compared the phase shift ability of light and dark (LD) cycles between the SCN and peripheral tissues. The phase-shifting paradigm is closely analogous to trans-Atlantic flights from west to east (6 h advance) and from east to west (6 h delay).

The emissional rhythms in the SCN shifted 6 h most rapidly within one day, while those in peripheral tissues took more than two days. Circadian oscillators in the periphery were temporarily lost following large and abrupt shifts in the environmental light cycle.

Notably, jetlag can be explained as a condition where the rhythms in the SCN and peripheral tissues are desynchronized.

[1] Rika Numano et.al., Proc. Natl. Acad. Sci. U S A, 103, 3716, (2006)

[2] Shin Yamazaki1*, Rika Numano2*, Michikazu Abe1*, Akiko Hida2, Ri-ichi Takahashi3, Masatsugu Ueda3, Gene D. Block1, Yoshiyuki Sakaki2, Michael Menaker1, Hajime Tei2 *These authors contributed equally to this work.

Resetting central and peripheral circadian oscillators in transgenic rats.
Science, 288, 682, (2000).
DOI: 10.1126/science.288.5466.682
1NSF Center, Univ. of Virginia, 2Inst. of Medical Science, Univ. of Tokyo,3Y.S. New Technology Institute Inc.

Media Contact

Adarsh Sandhu Research asia research news

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors