Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fate and effects of the drug Tamiflu in the environment

28.11.2008
The research council FORMAS in Sweden has granted 574 000 euro to a new research project that will study the environmental fate and effects of the anti-viral drug Tamiflu on the development on influenza resistance.

Tamiflu is being stockpiled all over the world for use in fighting the next influenza pandemic. However, there are growing signs that influenza viruses may develop resistance to this vital pharmaceutical, because it is routinely prescribed for seasonal influenza.

- This research project is interdisciplinary and will combine studies on the environmental fate of the drug with in vivo studies of the development of Tamiflu resistant viruses say the project leader Björn Olsen at the Department of Medical Sciences Uppsala University.

This research project presents an innovative approach to studying the development of Tamiflu resistance in influenza viruses caused by environmental contamination which is a potential threat to one of our few defences against a future influenza pandemic.

Scientists from Uppsala University, Umeå University and Karolinska Institute will investigate the potential problem from an environmental chemical, virological and infectious diseases aspect.

A wide range of topics will be addressed; studies of the degradation of Tamiflu in sewage treatment plants will be combined with screening of the environmental levels in surface water in Japan. Japan is one of the world’s top-per-capita consumers of Tamiflu and it has been estimated that approximately 40% of those that are infected by influenza viruses are treated with Tamiflu. This makes Japan one of the “Hot Spots” in the world and the research project has established collaboration with scientists at Kyoto University and several field sampling campaigns in Japan has been scheduled. Detected environmental levels will then be used in an in vivo Mallard infection model for detailed studies on the development of Tamiflu resistance in low pathogenic avian viruses. This will be combined with a screening study of the occurrence of resistant viruses in faecal samples from wild ducks in the vicinity of Japanese sewage treatment plants.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>