Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elemental Mercury in Toronto, Ontario Could be Dangerous for Your Health

02.03.2011
Buildings are not only an intrinsic part of Toronto’s landscape, they are also adding mercury to the city’s air. As suggested by the findings of a Ryerson University study, it can lead to a negative long-term impact on our health.

“Indoor air has higher mercury concentration than outdoor air,” says chemistry and biology professor Julia Lu, supervisor of the research team and one of the authors of the study. “As a result, mercury has been reduced or removed from some products that are used indoors, but more steps need to be taken.”

Elemental mercury, a highly toxic substance found in such things as thermometers, batteries and fluorescent lights is liquid at room temperature. If it is not sealed in a container it can evaporate and be carried into the atmosphere. Eventually, it becomes oxidized mercury, which clings to surfaces in the environment. It will also change from inorganic forms to organic forms, which are much more toxic and will accumulate in the food chain.

To measure gaseous elemental mercury (GEM) in the atmosphere in Toronto, the researchers analyzed GEM concentrations at different times of day along major streets and highways, such as Queen Street, Eglinton Avenue, Highway 7 and Steeles Avenue. Twenty-seven underground and surface parking lots throughout the downtown core were also tested, as were five locations within and around Ryerson University’s Kerr Hall.

The researchers made several discoveries. First, they found that in Toronto, the higher the elevation, the higher the level of atmospheric GEM. Second, GEM levels are higher in underground parking lots than in surface lots. Third, GEM levels are higher indoors than outdoors. Fourth, GEM levels are higher in the outside air near building walls. Fifth, GEM levels at pedestrian levels during rush hour and non-rush hour were not statistically different from each other. The final finding, according to Lu, indicates that vehicles are not a major source of mercury to the urban atmosphere.

“There’s no need for alarm among pedestrians because street-level concentrations of elemental mercury aren’t high compared to rural areas. It won’t make you sick right away,” Lu says.

The real danger, she continues, is the future impact of mercury on the planet. Through a process combining long-range transport, chemical conversion, and bio-accumulation, mercury builds up in living organisms and ultimately affects every level of the food chain. This situation poses a serious threat to human and animal life, and the environment. A common example of bio-accumulation is the high levels of mercury in fish and shellfish. Consumption of such fish during pregnancy can pose significant health problems for babies.

More studies are needed to estimate the contribution of urban areas to atmospheric mercury, and the impact of indoor air on outdoor air quality and human health. In the meantime, though, Lu says it’s important to take some action now.

“Mercury can be discovered during building renovations. For example, it can be found in the floor tiles of an industrial building that used mercury or after a mercury spill in an old laboratory. It can be difficult to retrieve. So, our starting point is to get the source of the mercury under control and then reduce indoor levels of it.”

Lu and her team continue to research the presence and impact of elemental mercury, their next objective will be to pinpoint and quantify buildings that are sources of elemental mercury.

The paper’s lead authors are former Ryerson graduate student Elaine Cairns and undergraduate student Kavitharan Tharumakulasingam (a NSERC Undergraduate Student Research Awards recipient), both of whom were supervised by Lu. The research team also included Lu’s former graduate students Irene Cheng and Y. Huang, current graduate student Muhammad Yousaf, Dave Yap of the Ontario Ministry of the Environment and Makshoof Athar, a postdoctoral fellow from the University of the Punjab.

“Source, concentration, and distribution of elemental mercury in the atmosphere in Toronto, Canada” was published earlier this year in the online version of the journal Environmental Pollution. Research funding was provided by the Ontario Ministry of the Environment, the Natural Sciences and Engineering Research Council of Canada, and the Canada Foundation for Innovation. Support for Athar’s work was provided by the Higher Education Commission of Pakistan.

Ryerson University is Canada’s leader in innovative, career-oriented education and a university clearly on the move. With a mission to serve societal need, and a long-standing commitment to engaging its community, Ryerson offers more than 100 undergraduate and graduate programs. Distinctly urban, culturally diverse and inclusive, the university is home to 28,000 students, including 2,000 master’s and PhD students, nearly 2,700 tenured and tenure-track faculty and staff, and more than 130,000 alumni worldwide. Research at Ryerson is on a trajectory of success and growth: externally funded research has doubled in the past four years. The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education. For more information, visit www.ryerson.ca

Johanna VanderMaas | Newswise Science News
Further information:
http://www.ryerson.ca

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>