Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries on depression

29.02.2012
During depression, the brain becomes less plastic and adaptable, and thus less able to perform certain tasks, like storing memories.

Researchers at Karolinska Institutet have now traced the brain's lower plasticity to reduced functionality in its support cells, and believe that learning more about these cells can pave the way for radical new therapies for depression.

"We were able to cure memory dysfunction in 'depressed' rats by giving them doses of D-serine," says Mia Lindskog, biologist and Assistant Professor at Karolinska Institutet's Department of Neuroscience.

Dr Lindskog and her team used FSL rats, which are rats that have been specially bred with a disposition for 'depression'. The rats were first put through two tests to confirm that they had the symptoms that are also characteristic of human depression. In the first, the rats' memories were checked by repeatedly being exposed to different objects; in the second, the team assessed their level of apathy by releasing them in a container of water and observing whether they merely stayed floating in the container or immediately tried to climb out (non of the rats had to stay in the water for more than five minutes). In both cases the FSL rats' results were compared with normal laboratory rats, and memory disorders and apathy could be confirmed.

The researchers then injected the rats with D-serine. This substance improved their memories but had no effect on the apathy.

"We have shown that there are two symptoms here that can be influenced independently of one another, which means they could be treated in tandem in patients with depression," says Dr Lindskog.

The researchers also studied the synaptic activity in the hippocampus of the rats, a part of the brain which plays an important part in the memory. They found that there was a much higher degree of synaptic activity in the brains of the depressed rats than in the controls. However, when the researchers tried to increase the level of signal transmission, they found the brains of the depressed rats to be unresponsive, which indicated that they had a lower plasticity that rendered them unable to increase neuronal activity when needed - unlike the brains of the healthy rats. When the brain samples were soaked in D-serine, the plasticity of the depressed rats' brains improved.

D-serine is a substance secreted by astrocytes, which are support cells for brain neurons.

"We don't actually know very much about these glial cells, but it's very likely that they perform a very important function in the brain," says Dr Lindskog.

It is hoped that their discoveries will eventually lead to new therapies for depression.

"D-serine doesn't pass the blood-brain barrier particularly well, so it's not really a suitable candidate on which to base a drug, but the mechanism that we've identified, whereby it's possible to increase plasticity and improve the memory, is a feasible route that we might be able to reach in a way that doesn't involve D-serine," says Dr Lindskog.

Publication:

Marta Gómez-Galán, Dimitri De Bundel, Ann Van Eeckhaut, Ilse Smolders & Maria Lindskog

Dysfunctional Astrocytic Regulation of Glutamate Transmission in a Rat Model of Depression

Molecular Psychiatry, online 28 February 2012

For further information, please contact:
Assistant Professor Mia Lindskog
Work: +46 (0)8 524 87081 Mobile: +46 (0)703 173272
E-mail: Mia.Lindskog@ki.se

Katarina Sternudd | EurekAlert!
Further information:
http://www.ki.se

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>