Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes drug could treat leading cause of blindness

08.05.2012
Experiments show that metformin blocks uveitis in laboratory rats

University of Texas Medical Branch at Galveston researchers have discovered that a drug already prescribed to millions of people with diabetes could also have another important use: treating one of the world's leading causes of blindness.

In laboratory rat and cell-culture experiments, the scientists found that metformin, which is commonly used to control blood sugar levels in type 2 diabetes, also substantially reduced the effects of uveitis, an inflammation of the tissues just below the outer surface of the eyeball. Uveitis causes 10 to 15 percent of all cases of blindness in the United States, and is responsible for an even higher proportion of blindness globally. The only treatment now available for the disorder is steroid therapy, which has serious side effects and cannot be used long-term.

"Uveitis has various causes — the most common are infectious diseases and autoimmune disorders— but they all produce inflammation within the eye," said UTMB professor Kota V. Ramana, senior author of a paper on the study now online in the journal Investigative Ophthalmology & Visual Science. "Metformin inhibits the process that causes that inflammation."

The scientists discovered metformin's efficacy when they tested it in rats given an endotoxin that mimicked the inflammatory effects of bacterial infection. The results showed clearly that metformin was a very effective anti-uveitis agent.

"We found that the drug is therapeutic as well as preventive — if we gave our rats the drug beforehand, they didn't develop uveitis, and if we gave it after uveitis had developed, it was therapeutic," said UTMB professor Satish Srivastava, also an author of the IOVS paper. "Metformin's strong anti-inflammatory properties make this possible."

According to the researchers, metformin works by activating an enzyme called AMPK, which in turn damps down the activity of the protein NF-kappa B. The inhibition of NF-kappa B suppresses the production of inflammatory signaling molecules — cytokines and chemokines — needed to initiate and sustain uveitis.

Because metformin is already used so widely as a therapy for diabetes, the UTMB scientists believe that it has a good chance of being rapidly adopted as an anti-uveitis drug.

"I think after a few more pre-clinical studies are done, we can get this drug to patients in a shorter time than usual," Ramana said. "Its safety is already known, so all that we need to see is its efficacy in humans."

Other authors of the IOVS paper include postdoctoral fellows Nilesh Kalariya and Shoeb Mohammad, and Professor Naseem Ansari. This research was supported by the National Institutes of Health.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht Researchers develop high-performance cancer vaccine using novel microcapsules
25.05.2020 | Chinese Academy of Sciences Headquarters

nachricht Blood flow recovers faster than brain in micro strokes
25.05.2020 | Rice University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>