Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cytoplasm of scrambled frog eggs organizes into cell-like structures, Stanford study finds

07.11.2019

Can scrambled eggs unscramble themselves? Well, sort of.

The cytoplasm of ruptured Xenopus frog eggs spontaneously reorganizes into cell-like compartments, according to a study by researchers at the Stanford University School of Medicine.


After being scrambled, the cytoplasm of Xenopus frog eggs spontaneously reorganizes into cell-like compartments. Nuclei are blue; microtubules are green; the endoplasmic reticulum is red.

Credit: Xianrui Cheng/Stanford Medicine

"We were gobsmacked," said James Ferrell, MD, PhD, professor of chemical and systems biology and of biochemistry. "If you blend a computer, you'd end up with tiny bits of computer, and they wouldn't even be able to add two and two. But, lo and behold, the cytoplasm reorganizes."

Remarkably, the self-assembled compartments retain the ability to undergo division and can form smaller compartments. Previous studies have shown that some subcellular structures, such as centrosomes and endoplasmic reticulum, can self-assemble outside cells from their purified components, demonstrating that these structures have some ability to self-organize. However, the new study provides the first example of self-organization at the scale and complexity of entire cells.

Ferrell is the senior author on the study, which will be published Nov. 1 in Science. The lead author is postdoctoral scholar Xianrui Cheng, PhD.

Compartments form spontaneously

The discovery relied on Cheng's observations. While studying a molecular process known as programmed cell death, he noticed the nuclei in a tube of cytoplasmic extract from frog eggs were behaving unexpectedly. After 30 minutes or so, the nuclei had organized so the distance between two nuclei was almost equal, Cheng said. When he imaged the cytoplasmic extract on microscope slides, he saw that it had formed distinct compartments that resembled a sheet of cells.

"If you take the cytoplasm of the frog egg -- note that the cytoplasm has been homogenized, so whatever spatial structure that was there has been completely disrupted -- and just let it sit at room temperature, it will reorganize itself and form small cell-like units. That's pretty amazing," Cheng said. These cell-like compartments formed whether or not Xenopus sperm nuclei were added, suggesting that the behavior relied on something intrinsic to the egg.

To understand the mechanism underlying the phenomenon, the researchers tested whether compartment formation was affected by the addition of chemical inhibitors to cytoskeletal proteins, motor proteins and kinases, which activate other proteins. This approach revealed that ATP, the primary source of energy in the cell, and microtubules, cytoskeletal filaments that provide structural support, were required for compartments to form. Dynein, a type of motor protein, was also required for proper microtubule localization.

Self-organized compartments divide

These cell-like compartments not only looked like cells; they divided like them, too. The egg extract that the researchers used when they identified compartment formation contained a chemical that prevented the cells from entering the cell cycle. When this chemical was removed, and sperm nuclei were added, the egg extract formed compartments that divided into smaller compartments.

The researchers saw that these compartments could undergo over 25 rounds of division, indicating that the process was very robust. The division was also reductive, Cheng said, since the total amount of cytoplasm remained constant and was being divided into smaller and smaller compartments with each cycle. "You're taking the material from the egg, and it divides in a mode that's reminiscent of embryonic development," he said. "Just like they're supposed to in a real egg."

Future directions

All of these findings suggest that the Xenopus egg cytoplasm has the intrinsic ability to generate the basic spatial organization of the cell and even has some of its functions. An open question, however, is what role this phenomenon plays in the normal physiology of the egg. Another question is whether this ability to self-organize is peculiar to eggs or is shared by other types of cells.

The researchers also hope to further understand what's needed for self-organization to occur. "My favorite question right now," Ferrell said, "is can we make a simple model that explains the basics of this organization process? Or do we have to do something extremely complicated, like account for every single thing that we know a microtubule can do?"

###

Ferrell is a member of Stanford Bio-X, the Stanford Cancer Institute and the Wu Tsai Neurosciences Institute at Stanford.

The research was supported by the National Institutes of Health (R01GM110564 and P50GM107615).

Stanford's departments of Chemical and Systems Biology and of Biochemistry also supported this work.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Stanford Children's Health. For information about all three, please visit http://med.stanford.edu.

Print media contact: Rosanne Spector at (650) 725-5374 (manishma@stanford.edu)

Broadcast media contact: Margarita Gallardo at (650) 723-7897 (mjgallardo@stanford.edu)

Rosanne Spector | EurekAlert!

Further reports about: Medicine Xenopus cell-like structures cytoplasm cytoplasmic eggs microtubule nuclei proteins

More articles from Health and Medicine:

nachricht AI can jump-start radiation therapy for cancer patients
28.01.2020 | UT Southwestern Medical Center

nachricht The fight against multi-resistant pathogens
28.01.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Protein pores packed in polymers make super-efficient filtration membranes

A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations.

Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new...

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Scientists find far higher than expected rate of underwater glacial melting

29.01.2020 | Earth Sciences

What's in your water?

29.01.2020 | Power and Electrical Engineering

Screening sweet peppers for organic farming

29.01.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>