Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change may alter malaria patterns

17.02.2009
Temperature is an important factor in the spread of malaria and other mosquito-borne diseases, but researchers who look at average monthly or annual temperatures are not seeing the whole picture.

Global climate change will affect daily temperature variations, which can have a more pronounced effect on parasite development, according to a Penn State entomologist.

"We need higher resolution environmental and biological data to understand how climate change will affect the spread of the malaria parasite," says Matthew Thomas, professor of entomology. "We need to understand temperature from the point of view of the mosquito."

Female Anopheles mosquitoes spread malaria by biting infected humans and ingesting the malaria parasites along with the blood they need to reproduce other mosquitoes. In the mosquito's gut, the parasites are implanted in the gut wall where they develop into cyst-like structures and multiply. Once mature, the cysts burst releasing thousands of parasites, which migrate to the mosquito's salivary glands. The next time the mosquito bites a human, the parasites enter the human along with mosquito saliva. Except through blood transfusions, humans cannot directly spread malaria to other humans.

Temperature plays a key role in the development of malaria parasites in the mosquito. Adult female Anopheles mosquitoes can live up to eight weeks but most die within two or three weeks, so malaria parasites must complete their development before the last time a female feeds to infect humans. Scientists have known for a long time that temperature influences the speed at which malaria parasites develop in mosquitoes, but temperature's effects are more complicated than previously thought.

"A day in the tropics may vary from something like 65 degrees Fahrenheit at night to 86 degrees Fahrenheit in the day, even though the daily average may be 77 degrees Fahrenheit, " Thomas told attendees at the annual meeting of the American Association for the Advancement of Science today (Feb. 14) in Chicago. "Our research suggests this fluctuation matters because it alters the parasite incubation period in the mosquito, which is the most important factor in the spread of malaria. Small changes in incubation can lead to big changes in transmission."

The cooler the ambient temperature, the slower the malaria parasite develops. The warmer the ambient temperature, the faster the malaria parasite develops. If the incubation period takes longer than the life of the mosquito, the parasite will never infect a human. In some places, especially at higher elevations, malaria does not exist or is seasonal because, with cooler temperatures the mosquitoes die before the parasites are mature. While other factors such as how often a mosquito bites and the fertility of the mosquitoes remain important, the development of the parasite is the key to infection.

A daily mean temperature of 77 degrees Fahrenheit can indicate that the temperature was 77 degrees for 24 hours, or that it dipped to 59 degrees Fahrenheit and rose to 86 degrees Fahrenheit and still had a mean of 77 degrees Fahrenheit. Depending on how long the temperature stays cool and how long it is warm, the malaria parasite's time to maturity changes and the effects can be complex because fluctuation around cooler average temperatures has the opposite effect to fluctuation around warmer average temperatures.

"Daily temperature fluctuation can increase or decrease malaria risk, depending on background conditions," said Thomas.

Day-long fluctuations are not the only thing that influences the development of the malaria parasite. According to Thomas, during the first 12 hours of parasite development, temperature fluctuations can be fatal. Most mosquitoes bite to feed on blood in the evening or at night. If they bite in the early evening, the temperature will remain cool for at least 12 hours. Some mosquitoes may feed much closer to morning. If the morning feeders then face rapidly rising daytime temperatures reaching 88 to 90 degrees before 12 hours elapse, then the malaria parasite development can be stopped.

"If climate change increases the frequency of days when the temperature quickly exceeds the threshold temperature, then entire cohorts of mosquitoes could fail to develop the parasite," says Thomas.

In the developed world, the key to eradicating malaria, which once existed in parts of the U.S. and Europe, was an infrastructure that included good healthcare, mosquito control and habitat management. Future changes in temperature and rainfall are not likely to bring endemic malaria back to the U.S. or Europe. However, in parts of the world where these malaria preventing approaches do not exist, climate change may well lead to changes in malaria dynamics; whether this will be an increase in malaria or a decrease in malaria will depend not only on changes in mean conditions, but also changes in the daily temperature fluctuations.

The control of malaria depends on the environment of a small bodied, cold blooded insect -- the mosquito. A complete understanding of the temperature regime where they live as both larvae and adults is important to understand disease risk.

"Unfortunately, the areas where we need to get more sensitive temperature readings are also sometimes the most difficult places to obtain data," said Thomas. "But, this is the basic biology we need."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>