Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a better brain-in-a-dish, faster and cheaper

07.09.2018

 

UC San Diego researchers develop new protocol for creating human cortical organoids, mini-brains derived directly from primary cells that can be used to better explore and understand the real thing

Writing in the current online issue of the journal Stem Cells and Development, researchers at University of California San Diego School of Medicine describe development of a rapid, cost-effective method to create human cortical organoids directly from primary cells.


This is a false color image of a slice of human brain organoid from a patient with autism spectrum disorder.

Photo credit: Alysson Muotri, UC San Diego Health

Experimental studies of developing human brain function are limited. Research involving live embryonic subjects is constrained by ethical concerns and the fragile nature of the brain itself. Animal models only partially mimic or recapitulate human biology and cognitive function. Single cell studies do not capture the complexity of neural networks.

In recent years, the development of in vitro human organoids -- three-dimensional, miniaturized, simplified versions of an organ produced from reprogrammed stem cells -- have allowed scientists to study biological functions, diseases and treatments more realistically and in greater detail.

... more about:
»autism spectrum »human brain »stem cells

"And that includes the brain," said Alysson R. Muotri, PhD, professor in the UC San Diego School of Medicine departments of Pediatrics and Cellular and Molecular Medicine, director of the UC San Diego Stem Cell Program and a member of the Sanford Consortium for Regenerative Medicine. "Cerebral organoids can form a variety of brain regions. They exhibit neurons that are functional and capable of electrical excitation. They resemble human cortical development at the gene expression levels."

Muotri is among the leaders in the field, having used the "brain-in-a-dish" approach to provide the first direct experimental proof that the Zika virus can cause severe birth defects, to repurpose existing HIV drugs on a rare, inherited neurological disorder and to create Neanderthalized "mini-brains."

But human brain organoids are difficult, time-consuming and expensive to produce, requiring sophisticated tools and know-how to first generate human induced pluripotent stem cells (iPSCs) capable of becoming almost any kind of cell from skin cells, called fibroblasts, then directing those iPSCs to differentiate into the variety of interconnected cell types that comprise an organ like the brain.

In the new paper, senior author Muotri and colleagues describe a new, rapid and cost-effective method to reprogram individual somatic cells directly into cortical organoids from hundreds of individuals simultaneously. To do so, they compressed and optimized several steps of the process so that somatic cells are reprogrammed, expanded and stimulated to form cortical cells almost simultaneously. The result is a cortical organoid that fully develops from somatic cells with only minor manipulation, Muotri said.

"What we've done is establish a proof-of-principle protocol for a systematic, automated process to generate large numbers of brain organoids," said Muotri. "The potential uses are vast, including creating large brain organoid repositories and the discovery of causal genetic variants to human neurological conditions associated with several mutations of unknown significance, such as autism spectrum disorder. If we want to understand the variability in human cognition, this is the first step."

###

Co-authors of the study include: Monique Schukking, Helen Miranda, Cleber A. Trujillo, and Priscilla D. Negraes, all at UC San Diego.

Disclosure: Muotri is a co-founder and has an equity interest in TISMOO, a company dedicated to genetic analysis focusing on therapeutic applications customized for autism spectrum disorder and other neurological disorders with genetic origins. The terms of this arrangement have been reviewed and approved by the University of California San Diego according to its conflict of interest policies.

Media Contact

Scott LaFee
slafee@ucsd.edu
858-249-0456

 @UCSanDiego

http://www.ucsd.edu 

Scott LaFee | EurekAlert!
Further information:
http://dx.doi.org/10.1089/scd.2018.0112

Further reports about: autism spectrum human brain stem cells

More articles from Health and Medicine:

nachricht New 3D cultured cells mimic the progress of NASH
02.04.2020 | Tokyo University of Agriculture and Technology

nachricht Geneticists are bringing personal medicine closer to recently admixed individuals
02.04.2020 | Estonian Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

 
Latest News

TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications

06.04.2020 | Life Sciences

Lade-PV Project Begins: Vehicle-integrated PV for Electrical Commercial Vehicles

06.04.2020 | Power and Electrical Engineering

Lack of Knowledge and Uncertainty about Algorithms in Online Services

06.04.2020 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>