Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's might be transmissible in similar way as infectious prion diseases

05.10.2011
The brain damage that characterizes Alzheimer's disease may originate in a form similar to that of infectious prion diseases such as bovine spongiform encephalopathy (mad cow) and Creutzfeldt-Jakob, according to newly published research by The University of Texas Health Science Center at Houston (UTHealth).

"Our findings open the possibility that some of the sporadic Alzheimer's cases may arise from an infectious process, which occurs with other neurological diseases such as mad cow and its human form, Creutzfeldt-Jakob disease," said Claudio Soto, Ph.D., professor of neurology at The University of Texas Medical School at Houston, part of UTHealth.

"The underlying mechanism of Alzheimer's disease is very similar to the prion diseases. It involves a normal protein that becomes misshapen and is able to spread by transforming good proteins to bad ones. The bad proteins accumulate in the brain, forming plaque deposits that are believed to kill neuron cells in Alzheimer's."

The results showing a potentially infectious spreading of Alzheimer's disease in animal models were published in the Oct. 4, 2011 online issue of Molecular Psychiatry, part of the Nature Publishing Group. The research was funded by The George P. and Cynthia W. Mitchell Center for Research in Alzheimer's Disease and Related Brain Disorders at UTHealth.

Alzheimer's disease is a form of progressive dementia that affects memory, thinking and behavior. Of the estimated 5.4 million cases of Alzheimer's in the United States, 90 percent are sporadic. The plaques caused by misshapen aggregates of beta amyloid protein, along with twisted fibers of the protein tau, are the two major hallmarks associated with the disease. Alzheimer's is the sixth leading cause of death in the United States, according to the Alzheimer's Association.

Researchers injected the brain tissue of a confirmed Alzheimer's patient into mice and compared the results to those from injected tissue of a control without the disease. None of the mice injected with the control showed signs of Alzheimer's, whereas all of those injected with Alzheimer's brain extracts developed plaques and other brain alterations typical of the disease.

"We took a normal mouse model that spontaneously does not develop any brain damage and injected a small amount of Alzheimer's human brain tissue into the animal's brain," said Soto, who is director of the Mitchell Center. "The mouse developed Alzheimer's over time and it spread to other portions of the brain. We are currently working on whether disease transmission can happen in real life under more natural routes of exposure."

UTHealth co-authors of the paper, "De novo Induction of amyloid-B Deposition in vivo," are Rodrigo Morales, Ph.D, postdoctoral fellow, and Claudia Duran-Aniotz, research assistant. Other co-authors are Joaquin Castilla, Ph.D., Basque Foundation for Science, Bilbao, Spain; and Lisbell D. Estrada, Ph.D., Universidad Catolica de Chile, Santiago, Chile. Duran-Anoitz is also a doctoral student at the Universidad de los Andes in Santiago, Chile. Soto, Morales, Castilla and Estrada did a portion of the research at The University of Texas Medical Branch at Galveston.

Deborah Mann Lake | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>