Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New advance announced in reducing 'bad' cholesterol

09.12.2011
Researchers identify enzyme that could be targeted to help body tackle LDLs

Scientists from the University of Leicester and the University of California Los Angeles (UCLA) have announced a major advance towards developing drugs to tackle dangerous, or 'bad', cholesterol in the body.

They have filed two patents for developing targeted drugs that would act as a catalyst for lowering levels of 'bad' cholesterol.

Two research papers published by the academics enhance the understanding of the regulation of low-density lipoprotein (LDL) or "bad" cholesterol.

LDL, the so-called "bad" cholesterol, is often linked to medical problems like heart disease, stroke and clogged arteries.

In the body, cells in the liver produce an LDL receptor that binds LDL and removes it from the blood, thereby lowering cholesterol levels.

The scientists have characterised an enzyme called IDOL that plays a key role in regulating the amount of LDL receptor available to bind with 'bad' cholesterol. Therefore targeting the enzyme with drugs could increase the levels of LDL receptors present, thus lowering circulating cholesterol in humans.

Professor John Schwabe, Head of Biochemistry at the University of Leicester, said: "Development of a drug that interferes with IDOL's activity could help lower levels of LDL. Our research has greatly enhanced our understanding of this important process."

Prof John Schwabe, Dr Ben Goult and Dr Louise Fairall at the University of Leicester in collaboration with the University of California Los Angeles (UCLA) published their research in the top research journals: Genes & Development and the Proceedings of the National Academy of Science (PNAS). The research was funded by The Wellcome Trust, the NIH and the Howard Hughes Medical Institute.

The study published in Genes & Development announced the first atomic structural information on IDOL and identified the E2 ligase, UBE2D that works with IDOL to degrade the LDL receptor.

In the second research article published in PNAS, the team elucidated the molecular basis for the stringent specificity of IDOL for the LDL receptor.

Professor Schwabe added: "Remarkably, IDOL only targets three proteins for degradation (all lipoprotein receptors) and this research paper greatly enhances our understanding of this specificity and identifies key residues involved in mediating this interaction."

"A potential future drug that targets IDOL could be prescribed in conjunction with statin drugs, which also cut cholesterol levels by increasing production of the LDL receptor and these two studies make considerable headway towards this."

The universities have filed 2 patents related to the research findings.

For more information contact:

Prof. John Schwabe, University of Leicester: 0116-229-7030 Email js336@leicester.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests

Graphic illustration available from pt91@le.ac.uk

Prof. John Schwabe | EurekAlert!
Further information:
http://www.leicester.ac.uk

Further reports about: End User Development Idol LDL PNAS UCLA cholesterol level genes research paper

More articles from Health and Medicine:

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When wheels and heads are spinning - DFG research project on motion sickness in automated driving
22.05.2019 | Technische Universität Berlin

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>