Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerated Search for Active Agents to Treat Alzheimer’s and Parkinson’s

24.02.2012
Professor Erich Wanker of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and of the Excellence Cluster Neurocure is to receive EUR 675 000 in funding from the Helmholtz Association over the next two years.

The grant shall be used to accelerate the search for active agents to treat diseases that are caused by protein misfolding. These include Alzheimer’s and Parkinson’s. The grant amount will be matched by the MDC, a member institution of the Helmholtz Association, which means that the total funding for the research project will be EUR 1.35 million.

The grant shall be used to develop a standardized screening platform for the identification of active agents that can be utilized by the pharmaceutical industry. The project is intended to result in the establishment of a spin-off company. The key element will be a system to identify active agents that impact protein aggregates that are toxic for brain cells. Protein aggregation plays a significant role in common neurological diseases such as Alzheimer’s and Parkinson’s or the rare Huntington’s disease.

In the pathogenesis of these diseases, a misfolding of specific proteins occurs in the brain cells, leading to an aggregation of harmful structures that cannot be disposed of. This increasingly leads to degeneration of the brain cells in the affected individuals and subsequently – depending on the protein and the disease – to memory loss, movement disorders, psychosis and dementia. Altogether, about 40 diseases can be attributed to protein misfolding, including diabetes mellitus.

The research group of Professor Wanker has been studying protein misfolding for over ten years and has developed innovative concepts and methods to test active agents for their capacity to intervene in protein misfolding processes. One of the group’s discoveries is that epigallocatechin-3-gallate (EGCG), a green tea extract, binds to toxic misfolded products and modulates these into nontoxic structures.

The methods hitherto used by the group shall now be incorporated into a technology platform to test larger libraries of potential active agents. This will include a high-throughput robotic system developed by the researchers for investigating interactions among proteins but also between proteins and other substances. In 2008 they received the Erwin Schrödinger Prize for research in this area.

The new Helmholtz Validation Fund, according to the Helmholtz Association announcement, will also fund a project of the Helmholtz Center Dresden-Rossendorf and the Research Center Jülich. The aim of this project is to improve imaging techniques for drug development to treat Alzheimer’s.

Until 2015 the Initiative and Networking Fund of the Helmholtz Association has allocated a total of EUR 26 million to the Helmholtz Validation Fund to fund projects at Helmholtz centers. Including the matching funds from the centers, more than EUR 50 million will be available for technology transfer projects.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.helmholtz.de/en/research/technologietransfer/foerderinstrumente/helmholtz_validierungsfonds/

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>