Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A link between DNA transcription and disease-causing expansions

26.11.2014

Researchers in human genetics have known that long nucleotide repeats in DNA lead to instability of the genome and ultimately to human hereditary diseases such Freidreich's ataxia and Huntington's disease.

Scientists have believed that the lengthening of those repeats occur during DNA replication when cells divide or when the cellular DNA repair machinery gets activated. Recently, however, it became apparent that yet another process called transcription, which is copying the information from DNA into RNA, could also been involved.

A Tufts University study published online on November 20 in the journal "Cell Reports" by a research team lead by Sergei Mirkin, the White Family Professor of Biology at Tufts' School of Arts and Sciences, along with former graduate student Kartick Shah and graduate students Ryan McGuity and Vera Egorova, explores the relationship between transcription and the expansions of DNA repeats. It concludes that the active transcriptional state of a DNA segment containing a DNA repeat predisposes it for expansions. The print version of the study will be published on December 11.

"There are a great many simple repetitive motifs in our DNA, such as GAAGAAGAA or CGGCGGCGG," says Mirkin. "They are stable and cause no harm if they stay short. Occasionally, however, they start lengthening compulsively, and these uncontrollable expansions lead to dramatic changes in genome stability, gene expression, which can lead to human disease."

In their study, the researchers used baker's yeast to monitor the progress and the fundamental genetic machineries for transcription, replication and repair in genome functioning.

"The beauty of the yeast system is that it provides one with a practically unlimited arsenal of tools to study the mechanisms of genome functioning," says Mirkin. "We created genetic systems to track down expansions of the repeats that were positioned in either transcribed or non-transcribed parts of reporter genes."

After measuring the rate of repeat expansions in all these cases, the authors found that a repeat can expand under the condition when there is practically no transcription, but the likelihood of the expansion process is drastically (10-fold) higher when the reporter is transcriptionally active.

Surprisingly, however, transcription machinery does not need to physically pass through the repeat to stimulate its expansion. Thus, it is the active transcription state of the repeat-containing DNA segment, rather than RNA synthesis through the repeat that promotes expansions.

In the transcriptionally active state, DNA is packaged in chromatin more loosely than when it is transcriptionally inactive. More specifically, the density of nucleosomes along the transcribed DNA segment is significantly lower than that in the non-transcribed segment. This packaging of repetitive DNA within the transcribed areas gives much more room for DNA strand gymnastics, ultimately leading to repeat expansions.

Whatever the exact model, says Mirkin, the fact that expandable DNA repeats were always found in transcribed areas of our genome may not be that surprising after all.

This study was funded by NIH grants GM60987 and GM105473.

Shah et al., 2014, Cell Reports 9, 1-9
December 11, 2014
http://dx.doi.org/10.1016/j.celrep.2014.10.048

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the Premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Alex Reid | EurekAlert!
Further information:
http://www.tufts.edu/

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>