Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better way to measure the stiffness of cancer cells

01.03.2017

Laser technique peers through individual cells to gauge stiffness with unprecedented speed

Biomedical engineers at Duke University have discovered a way to detect signs of cancer on a cell-by-cell basis using two lasers and a camera.


Images of cells are analyzed to calculate the level of disorder in their internal structures. The more orderly the cell, the stiffer it may be, possibly indicating cancer.

Credit: Adam Wax, Duke University


As liquid flows past a cell, internal structures shift in the direction of the flow. The amount of shift can reveal a cell's stiffness, which is higher in cancerous tissue. Blue areas indicate the cell's internal structures are becoming less dense, whereas the red areas are becoming more so.

Credit: Adam Wax, Duke University

Several medical devices currently in use and in clinical trials around the world look for increases in cellular stiffness as an indicator of cancerous tissue. These devices, however, rely on readings from many cells clustered together within the body and cannot operate on a cellular level.

In a study published online Feb. 28 in the Biophysical Journal, researchers describe a technique for assessing an individual cell's stiffness using patterns that appear within its internal structure. The results show that the more organized its innards, the stiffer the cell.

In previous work, Adam Wax, professor of biomedical engineering at Duke, showed that a cell's internal structures shift as fluids flow around its exterior.

"Think of a cell as a large Jell-O mold with a lot of fruit suspended in it," said Wax. "If you blow on it really hard with compressed air, everything is going to move in the direction of the air a little bit."

Wax also showed that he could calculate cellular stiffness by measuring the amount of that shift. This discovery had many advantages over traditional methods of measuring the rigidity of a single cell. For example, no physical contact with the cell was required and measurements took much less time.

"Traditional approaches like atomic force microscopy take all day just to prepare a single sample," said Will Eldridge, a PhD student in Wax's lab and first author of the paper. "Using a moving liquid to measure shear flow only takes 30-40 minutes to image a group of cells."

Still not satisfied with that timetable, Wax and Eldridge tried to find a visual metric that could do the same job in less time. In the new paper, they show that the amount of disorder found within a cell's internal structures directly correlates to its stiffness.

To measure cellular disorder, the researchers shine a laser through a cell and compare it to a second, unobstructed beam. The differences in the amount of time it takes for the two lasers to travel through the sample are then analyzed to produce a picture, revealing just how disordered the cell's internal structures are.

To prove their idea worked, the group measured these "phase disorders" in five different types of live cancer cells just before measuring their stiffness using the already proven "Jell-O mold" technique. As hoped, the two metrics were highly correlated.

"The speed of this technique is only limited by the size of your camera's field of view," said Eldridge. "You could potentially measure hundreds of individual cells in a matter of seconds."

More work is needed to determine the exact relationship between the two measurements, but Wax is hopeful that the technique could be translated into a new biomedical device for cancer screening.

"It's widely known that cellular stiffness is an indicator of cancer, but there's no viable diagnostic tool that can use that knowledge on a cellular scale," said Wax. "With this technique, I can see a path to creating a high-throughput system that could quickly and easily screen for cervical, esophageal or colon cancer -- anywhere you could take a tissue scraping."

###

This work was supported by the National Science Foundation (CBET 1604562).

CITATION: "Optical phase measurements of disorder strength link microstructure to cell stiffness," W.J. Eldridge, Z.A. Steelman, B. Loomis, A. Wax. Biophysical Journal, Feb. 28, 2017. DOI: 10.1016/j.bpj.2016.12.016

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Health and Medicine:

nachricht A new link between migraines, opioid overuse may be key to treating pain
20.11.2019 | University of Illinois at Chicago

nachricht Walking Changes Vision
20.11.2019 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>