Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wearable ultrasound patch monitors blood pressure deep inside body

13.09.2018

A new wearable ultrasound patch that non-invasively monitors blood pressure in arteries deep beneath the skin could help people detect cardiovascular problems earlier on and with greater precision. In tests, the patch performed as well as some clinical methods to measure blood pressure.

Applications include real-time, continuous monitoring of blood pressure changes in patients with heart or lung disease, as well as patients who are critically ill or undergoing surgery. The patch uses ultrasound, so it could potentially be used to non-invasively track other vital signs and physiological signals from places deep inside the body.


Wearable ultrasound patch tracks blood pressure in a deep artery or vein.

Credit: Chonghe Wang/Nature Biomedical Engineering


The island-bridge structure allows the patch to be flexible and stretchable.

Credit: Chonghe Wang/Nature Biomedical Engineering

A team of researchers led by the University of California San Diego describe their work in a paper published Sept. 11 in Nature Biomedical Engineering.

"Wearable devices have so far been limited to sensing signals either on the surface of the skin or right beneath it. But this is like seeing just the tip of the iceberg," said Sheng Xu, a professor of nanoengineering at the UC San Diego Jacobs School of Engineering and the corresponding author of the study. "By integrating ultrasound technology into wearables, we can start to capture a whole lot of other signals, biological events and activities going on way below the surface in a non-invasive manner."

"We are adding a third dimension to the sensing range of wearable electronics," said Xu, who is also affiliated with the Center for Wearable Sensors at UC San Diego.

The new ultrasound patch can continuously monitor central blood pressure in major arteries as deep as four centimeters (more than one inch) below the skin.

Physicians involved with the study say the technology would be useful in various inpatient procedures.

"This has the potential to be a great addition to cardiovascular medicine," said Dr. Brady Huang, a co-author on the paper and radiologist at UC San Diego Health. "In the operating room, especially in complex cardiopulmonary procedures, accurate real-time assessment of central blood pressure is needed--this is where this device has the potential to supplant traditional methods."

A convenient alternative to clinical methods

The device measures central blood pressure--which differs from the blood pressure that's measured with an inflatable cuff strapped around the upper arm, known as peripheral blood pressure. Central blood pressure is the pressure in the central blood vessels, which send blood directly from the heart to other major organs throughout the body. Medical experts consider central blood pressure more accurate than peripheral blood pressure and also say it's better at predicting heart disease.

Measuring central blood pressure isn't typically done in routine exams, however. The state-of-the-art clinical method is invasive, involving a catheter inserted into a blood vessel in a patient's arm, groin or neck and guiding it to the heart.

A non-invasive method exists, but it can't consistently produce accurate readings. It involves holding a pen-like probe, called a tonometer, on the skin directly above a major blood vessel. To get a good reading, the tonometer must be held steady, at just the right angle and with the right amount of pressure each time. But this can vary between tests and different technicians.

"It's highly operator-dependent. Even with the proper technique, if you move the tonometer tip just a millimeter off, the data get distorted. And if you push the tonometer down too hard, it'll put too much pressure on the vessel, which also affects the data," said co-first author Chonghe Wang, a nanoengineering graduate student at UC San Diego. Tonometers also require the patient to sit still--which makes continuous monitoring difficult--and are not sensitive enough to get good readings through fatty tissue.

The UC San Diego-led team has developed a convenient alternative--a soft, stretchy ultrasound patch that can be worn on the skin and provide accurate, precise readings of central blood pressure each time, even while the user is moving. And it can still get a good reading through fatty tissue.

The patch was tested on a male subject, who wore it on the forearm, wrist, neck and foot. Tests were performed both while the subject was stationary and during exercise. Recordings collected with the patch were more consistent and precise than recordings from a commercial tonometer. The patch recordings were also comparable to those collected with a traditional ultrasound probe.

Making ultrasound wearable

"A major advance of this work is it transforms ultrasound technology into a wearable platform. This is important because now we can start to do continuous, non-invasive monitoring of major blood vessels deep underneath the skin, not just in shallow tissues," said Wang.

The patch is a thin sheet of silicone elastomer patterned with what's called an "island-bridge" structure--an array of small electronic parts (islands) that are each connected by spring-shaped wires (bridges). Each island contains electrodes and devices called piezoelectric transducers, which produce ultrasound waves when electricity passes through them. The bridges connecting them are made of thin, spring-like copper wires. The island-bridge structure allows the entire patch to conform to the skin and stretch, bend and twist without compromising electronic function.

The patch uses ultrasound waves to continuously record the diameter of a pulsing blood vessel located as deep as four centimeters below the skin. This information then gets translated into a waveform using customized software. Each peak, valley and notch in the waveform, as well as the overall shape of the waveform, represents a specific activity or event in the heart. These signals provide a lot of detailed information to doctors assessing a patient's cardiovascular health. They can be used to predict heart failure, determine if blood supply is fine, etc.

Next steps

Researchers note that the patch still has a long way to go before it reaches the clinic. Improvements include integrating a power source, data processing units and wireless communication capability into the patch.

"Right now, these capabilities have to be delivered by wires from external devices. If we want to move this from benchtop to bedside, we need to put all these components on board," said Xu.

The team is looking to collaborate with experts in data processing and wireless technologies for the next phase of the project.

###

Paper title: "Monitoring of the central blood pressure waveform via a conformal ultrasonic device." Co-authors include joint co-first authors Xiaoshi Li and Hongjie Hu, Lin Zhang, Zhenlong Huang, Muyang Lin, Zhuorui Zhang, Zhenan Yin, Hua Gong, Shubha Bhaskaran, Yue Gu, Mitsutoshi Makihata, Yuxuan Guo, Yusheng Lei, Yimu Chen, Yang Li, Tianjiao Zhang, Albert P. Pisano and Liangfang Zhang, UC San Diego; Chunfeng Wang, Zhengzhou University, China; and Zeyu Chen and Qifa Zhou, University of Southern California.

This project was supported by the National Institutes of Health (grant R21EB025521) and the Center for Wearable Sensors at UC San Diego.

Media Contact

Liezel Labios
llabios@ucsd.edu
858-246-1124

 @UCSanDiego

http://www.ucsd.edu 

Liezel Labios | EurekAlert!
Further information:
http://jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=2627
http://dx.doi.org/10.1038/s41551-018-0287-x

More articles from Medical Engineering:

nachricht New blood pressure app
10.09.2018 | Michigan State University

nachricht Research brief: Researchers 3D print prototype for 'bionic eye'
29.08.2018 | University of Minnesota

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

Im Focus: OLED integration in textiles: functional and eye-catching

Organic light-emitting diodes (OLED) are mainly known from televisions and smartphone displays. They can be used as lighting objects in car tail lights or lights. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as a partner for customer-specific OLED development and production is now presenting OLED elements that can be integrated into textiles at the Electronics System Integration Technology Conference ESTC 2018 from September 18 - 21, 2018 in Dresden at booth no. 29.

The versatile OLEDs can not only light in color, they can also be designed in any shape and even transparent or dimmable. Applied on wafer-thin foils, they are...

Im Focus: Novel 3D printed polymer lenses for X-ray microscopes: highly efficient and low cost

Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart invented a new and cost-effective method for making X-ray lenses with nanometer-sized features and excellent focusing capabilities. By using an advanced 3D printing technique, a single lens can be manufactured under a minute from polymeric materials with extremely favorable X-ray optical properties, hence the costs of prototyping and manufacturing are strongly reduced. High-throughput and high-yield manufacturing processes of such lenses are sought after world-wide, which is why the scientists have filed a patent for their invention.

X-ray microscopes are fascinating imaging tools. They uniquely combine nanometer-size resolution with a large penetration depth: X-ray microscopy or XRM is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

New devices based on rust could reduce excess heat in computers

13.09.2018 | Physics and Astronomy

3.6 million euros for new quantum-technology project at the University of Stuttgart

12.09.2018 | Awards Funding

Multiyear Tracking of Atmospheric Radicals

12.09.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>