3.6 million euros for new quantum-technology project at the University of Stuttgart

Project leader Prof. Stefanie Barz of the Institute of Functional Matter and Quantum Technologies at the University of Stuttgart University of Stuttgart / Max Kovalenko

Digitization and networking are the basis of modern society. Nowadays, not only are IT applications outsourced to the ‘Cloud’, but also real objects are linked to one another, to form an ‘Internet of Things’. Such applications are intriguing, but they also raise the question of data and network security — aspects that are becoming of central importance both from a technological and a socio-political point of view.

The best of two worlds

Against this background, the SiSiQ project aims to develop fundamentally new concepts for secure information processing in networks. The focus is on novel methods that enable secure computations based on the rules of quantum physics. In order to achieve this, the scientists around project leader Prof. Stefanie Barz plan to bring together the best of two already established fields, quantum communication and quantum computing. Their goal is to advance photonic quantum technology and pioneer its use for secure quantum networks.

Photonic silicon technology as a Basis

To do so, they will investigate and implement new types of protocols for data transmission, and will perform distributed calculations in quantum networks based on photonic systems. The latter are ideal for the problem at hand, as quantum information can be both sent and processed in photonic networks. “The essential components of our networks will be based on photonic silicon technology. We will develop efficient single-photon sources as well as integrated silicon circuits,” explains project leader Prof. Stefanie Barz. “Subsequently we will use these networks to explore new possibilities for secure information processing.”

The researchers will study methods for transmitting information and performing calculations in the quantum networks, initially between two network nodes, eventually between several of them. In addition, they will look at possibilities how these networks might be ‘hacked’ — one of several important aspects with a view to utilizing the results of this project in commercial applications.

Bright minds for challenging research Topics

The “Quantum Futur” scheme is a measure of the “Photonics Research Germany” funding initiative launched by the Federal Ministry of Education and Research (BMBF). Its goal is to support excellent young scientists to advance the transition from basic research findings to novel applications.

The SiSiQ project will involve PhD students and postdocs, but also Bachelor and Master students can participate in graduation projects. The SiSiQ project will be funded for five years, starting from 1 September 2018. It is one of around ten projects across Germany being successful in the latest round of funding.

Scientific contact:
Prof. Dr. Stefanie Barz, University of Stuttgart, Institute of Functional Matter and Quantum Technologies and Center for Integrated Quantum Science and Technology IQST, Tel.: +49 (0)711/685 65254, E-mail: barz-office@fmq.uni-stuttgart.de

More about Prof. Stefanie Barz:
http://www.barzgroup.de
http://www.stefaniebarz.de/
Twitter: @StefanieBarz
More about IQST: http://www.iqst.org

Media Contact

Andrea Mayer-Grenu idw - Informationsdienst Wissenschaft

All latest news from the category: Awards Funding

Back to home

Comments (0)

Write a comment

Newest articles

Cooling down solar cells, naturally

Photovoltaics are more efficient when they operate at lower temperatures, which can be achieved in solar farms that space out arrays and use the wind to their advantage. A bright,…

Strongest Arctic cyclone on record led to surprising loss of sea ice

A warming climate is causing a decline in sea ice in the Arctic Ocean, where loss of sea ice has important ecological, economic and climate impacts. On top of this…

Tuberculosis and COVID-19 lung lesions

… revealed by high-resolution three-dimensional imaging. Insights that are not possible with conventional two-dimensional platforms include characterization of obliterated airways in tuberculosis and hemorrhage from ruptured blood vessels in COVID-19…

Partners & Sponsors