Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using artificial intelligence to predict risk of thyroid cancer on ultrasound

25.10.2019

New study uses machine learning on ultrasound images of thyroid nodules to predict risk of malignancy

Thyroid nodules are small lumps that form within the thyroid gland and are quite common in the general population, with a prevalence as high as 67%. The great majority of thyroid nodules are not cancerous and cause no symptoms.


Ultrasound image of thyroid nodule.

Credit: Dr. Elizabeth Cottril, Thomas Jefferson University

However, there are currently limited guidelines on what to do with a nodule when the risk of cancer is uncertain. A new study from The Sidney Kimmel Cancer Center - Jefferson Health investigates whether a non-invasive method of ultrasound imaging, combined with a Google-platform machine-learning algorithm, could be used as a rapid and inexpensive first screen for thyroid cancer.

"Currently, ultrasounds can tell us if a nodule looks suspicious, and then the decision is made whether to do a needle biopsy or not," says Elizabeth Cottril, MD, an otolaryngologist at Thomas Jefferson University, and clinical leader of the study. "But fine-needle biopsies only act as a peephole, they don't tell us the whole picture. As a result, some biopsies return inconclusive results for whether or not the nodule may be malignant, or cancerous, in other words."

If examining the cells of a needle biopsy proves inconclusive, the sample can be further tested via molecular diagnostics to determine risk of malignancy. These tests look for the presence of certain mutations or molecular markers that are associated with malignant thyroid cancers.

When nodules test positive for high risk markers or mutations, the thyroid may be surgically removed. However, the standards for when to use molecular testing are still in development, and the test is not yet offered in all practice settings, especially at smaller community hospitals.

In order to improve the predictive power of the first-line diagnostic, the ultrasound, Jefferson researchers looked into machine learning or artificial intelligence models developed by Google. These applications are being used in other spaces: retail giants like Urban Outfitters use machine learning to help classify their many products, making it easier for the consumer to find an item they're interested in.

Disney uses it to annotate their products based on specific characters or movies. In this case, the researchers applied a machine-learning algorithm to ultrasound images of patients' thyroid nodules to see if it could pick out distinguishing patterns. The study was published in JAMA-Oto on October 24th.

"The goal of our study was to see whether automated machine learning could use image-processing technology to predict the genetic risk of thyroid nodules, compared to molecular testing," says Kelly Daniels, a fourth year medical student at Jefferson and first author of the study.

The researchers trained the algorithm on images from 121 patients who underwent ultrasound-guided fine needle-biopsy with subsequent molecular testing. From 134 total lesions, 43 nodules were classified as high risk and 91 were classified as low risk, based on a panel of genes used in the molecular testing. A preliminary set of images with known risk classifications was used to train the model or algorithm.

From this bank of labeled images, the algorithm utilized machine-learning technology to pick out patterns associated with high and low risk nodules, respectively. It used these patterns to form its own set of internal parameters that could be used to sort future sets of images; it essentially "trained" itself on this new task. Then the investigators tested the trained model on a different set of unlabeled images to see how closely it could classify high and low genetic risk nodules, compared to molecular tests results.

"Machine learning is a low-cost and efficient tool that could help physicians arrive to a quicker decision as to how to approach an indeterminate nodule," says John Eisenbrey, PhD, associate professor of radiology and lead author of the study. "No one has used machine learning in the field of genetic risk stratification of thyroid nodule on ultrasound."

The researchers found that their algorithm performed with 97% specificity and 90% predictive positive value, meaning that 97% of patients who truly have benign nodules will have their ultrasound read as "benign" by the algorithm, and 90% of malignant or "positive" nodules are truly positive as classified by the algorithm . The high specificity is indicative of a low rate of false positives; this means that if the algorithm reads a nodule as "malignant" it is very likely to truly be malignant. The overall accuracy of the algorithm was 77.4%.

"This was such an important collaboration of surgeons and radiologists, and there's already interest from other institutions to pool our resources. The more data we feed the algorithm, the stronger and more predictive we'd expect it to become," says Dr. Cottril.

"There are so many potential applications of machine learning," says Dr. Eisenbrey. "In the future we'd like to make use of feature extraction, which will help us identify anatomically relevant features of high risk nodules."

Though preliminary, the study suggests that automated machine learning shows promise as an additional diagnostic tool that could improve the efficiency of thyroid cancer diagnoses. Once it becomes more robust, the approach could give doctors and patients more information in order to decide if thyroid lobe removal is necessary.

###

The authors report no conflict of interest.

Article Reference: Kelly Daniels, Sriharsha Gummadi, Ziyin Zhu, Shuo Wang, Jena Patel, Brian Swendseid, Andrej Lyshchik, Joseph Curry, Elizabeth Cottrill, John Eisenbrey, "Machine-Learning for the Genetic Risk Stratification of Thyroid Nodules by Ultrasound", JAMA Oto.

By Karuna Meda

Media Contacts:

Edyta Zielinska, 215-955-7359, edyta.zielinska@jefferson.edu

Karuna Meda, 267-624-4792, karuna.meda@jefferson.edu

Karuna Meda | EurekAlert!

More articles from Medical Engineering:

nachricht Implantable transmitter provides wireless option for biomedical devices
04.08.2020 | Purdue University

nachricht Certainty in just 15 minutes – researchers develop a graphene oxid based rapid test to detect infections
03.08.2020 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>