Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retina-on-a-chip provides powerful tool for studying eye disease

27.08.2019

Impact statement: New technology that recreates some of the complexity of the human retina may help scientists study eye disease and screen for drug side effects that harm the eye.

The development of a retina-on-a-chip, which combines living human cells with an artificial tissue-like system, has been described today in the open-access journal eLife.


Organ-on-a-chip system.

Fraunhofer IGB

This cutting-edge tool may provide a useful alternative to existing models for studying eye disease and allow scientists to test the effects of drugs on the retina more efficiently.

Many diseases that cause blindness harm the retina, a thin layer of tissue at the back of the eye that helps collect light and relay visual information to the brain. The retina is also vulnerable to harmful side effects of drugs used to treat other diseases such as cancer.

Currently, scientists often rely on animals or retina organoids, tiny retina-like structures grown from human stem cells, to study eye diseases and drug side effects. But results from studies in both models often fail to describe disease and drug effects in people accurately. As a result, a team of scientists have tried to recreate a retina for testing purposes using engineering techniques.

“It is extremely challenging, if not almost impossible, to recapitulate the complex tissue architecture of the human retina solely using engineering approaches,” explains Christopher Probst, Postdoctoral Researcher at the Fraunhofer Institute for Interfacial Engineering and Biotechnology in Stuttgart, Germany, and co-lead author of the current study.

To overcome these challenges, the scientists coaxed human pluripotent stem cells to develop into several different types of retina cells on artificial tissue. This tissue recreates the environment that cells would experience in the body and delivers nutrients and drugs to the cells through a system that mimics human blood vessels.

“This combination of approaches enabled us to successfully create a complex multi-layer structure that includes all cell types and layers present in retinal organoids, connected to a retinal pigment epithelium layer,” says co-lead author Kevin Achberger, Postdoctoral Researcher at the Department of Neuroanatomy & Developmental Biology at the Eberhard Karls University of Tübingen, Germany. “It is the first demonstration of a 3D retinal model that recreates many of the structural characteristics of the human retina and behaves in a similar way.”

The team treated their retina-on-the-chip with the anti-malaria drug chloroquine and the antibiotic gentamicin, which are toxic to the retina. They found that the drugs had a toxic effect on the retinal cells in the model, suggesting that it could be a useful tool for testing for harmful drug effects.

“One advantage of this tiny model is that it could be used as part of an automated system to test hundreds of drugs for harmful effects on the retina very quickly,” Achberger says. “Also, it may enable scientists to take stem cells from a specific patient and study both the disease and potential treatments in that individual’s own cells.”

“This new approach combines two promising technologies – organoids and organ-on-a-chip – and has the potential to revolutionise drug development and usher in a new era of personalised medicine,” concludes senior author Peter Loskill, Assistant Professor for Experimental Regenerative Medicine at the Eberhard Karls University of Tübingen, and head of the Fraunhofer Attract group Organ-on-a-Chip at the Fraunhofer Institute for Interfacial Engineering and Biotechnology. His laboratory, which spans the two institutes, is already developing similar organ-on-a-chip technology for the heart, fat, pancreas and more.

Reference

The paper ‘Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human Retina-on-a-Chip platform’ can be freely accessed online at https://doi.org/10.7554/eLife.46188. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Fraunhofer Research News 9/2019

You can also find out more about this topic in the upcoming issue of the Fraunhofer publication "Research News", which will be published on September 2, 2019.

Originalpublikation:

https://doi.org/10.7554/eLife.46188

Weitere Informationen:

https://www.igb.fraunhofer.de/en/press-media/press-releases/2019/retina-on-a-chi...

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

More articles from Medical Engineering:

nachricht Stretchable, wearable coils may make MRI, other medical tests easier on patients
26.02.2020 | Purdue University

nachricht Therapies without drugs
25.02.2020 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Bacteria loop-the-loop

27.02.2020 | Life Sciences

Project on microorganisms: Saci, the bio-factory

27.02.2020 | Life Sciences

New method converts carbon dioxide to methane at low temperatures

27.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>