Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights into Micromillimeters

03.07.2008
New high-tech imaging center “TIGA” at the University of Heidelberg / Robot “NanoZoomer” shows high-resolution images of cells and tissue

“TIGA,” the new high-tech imaging center at the University of Heidelberg founded in cooperation with the Japanese company Hamamatsu, provides deep insights: a high-tech robot makes it possible for the first time to automatically reproduce and evaluate tissue slices only micromillimeters thick – an important aid for researchers in understanding cancer or in following in detail the effect of treatment on cells and tissue.

The Hamamatsu Tissue Imaging and Analysis (TIGA) Center is a cooperative effort between the Institutes of Pathology and of Medical Biometry and Informatics at the University of Heidelberg and the Japanese company Hamamatsu Photonics. In addition, it belongs to BIOQUANT, the research center for quantitative biology at the University of Heidelberg. At its core is the imaging robot “NanoZoomer” from Hamamatsu Photonics: the robot scans the tissue slices and displays them on the monitor for researchers at ultra high resolution and in various planes.

“Technically, this has brought the fully automatic evaluation of tissue changes and approaches for new therapy within our grasp,” states Professor Dr. Peter Schirmacher, Director of the Institute for Pathology at Heidelberg University Hospital. This would represent a new milestone in pathology.

Detailed images help understand diseases

Which proteins are formed to a greater degree in cancer cells? How is tumor tissue changed during radiation treatment? Thanks to the NanoZoomer’s high-resolution images and special evaluation programs, researchers in the future will be able to evaluate tissue and cell samples more quickly and accurately and gain important new insights for therapy tailored to the individual patient, for example for breast cancer.

In the future, the robot will be able to determine changes in cells and tissue fully automatically. “The NanoZoomer represents a quantum leap in tissue research,” says Dr. Niels Grabe of the Institute for Medical Biometry and Informatics and research director at the TIGA Center.

Virtual Tissue is modeled from data

The medical IT specialists use the NanoZoomer to evaluate huge quantities of data from tissues for their research. For example, Dr. Niels Grabe and his team used data to model virtual skin tissue. “On a computer model of human skin tissue we can test whether certain substances are toxic, for example,“ explains Dr. Grabe. “In the future, this could make it easier to develop potential new drugs.”

Hamamatsu recognized the many possible applications early on, so that new technological markets have now been opened up for them. “We are happy to have found two partners in the Heidelberg Institute of Pathology and the Institute of Medical Biometry and Informatics with whom we can develop concrete clinical uses and new applications for research,” said Hideo Hiruma, Managing Director of Hamamatsu Photonics, Japan.

Contact:

Dr. Niels Grabe
Research Director at the TIGA center
Tel.: +49 6221 / 56 5143
E-Mail: niels.grabe@med.uni-heidelberg.de

Professor Dr. Peter Schirmacher
Director of the Institute for Pathology
at Heidelberg University Hospital
Phone: +49 6221 / 56 2601
E-Mail: peter.schirmacher@med.uni-heidelberg.de

Hamamatsu Photonics, Germany and Japan:
Hamamatsu Germany is the German subsidiary of Hamamatsu Photonics K.K. (Japan), a leading manufacturer of devices for the generation and measurement of infrared, visible, and ultraviolet light. These devices include photodiodes, photomultiplier tubes, scientific light sources, infrared detectors, photoconductive cells, image sensors and integrated measurement systems for science and industry. The parent company is dedicated to the advancement of photonics through extensive research. This corporate philosophy results in state-of-the-art products which are used throughout the world in scientific, industrial, and commercial applications.

Institute of Pathology, University Heidelberg:

The Institute of Pathology at the University Heidelberg contributes to patient care, teaching, advanced training, quality management and research. Key task is the diagnostic evaluation of tissues (histology) and cell preparations (cytology). The Institute analyses more than 60.000 samples from operative and conservative medicine which are an elementary component of clinical diagnostics and therapy planning. The Institute is consulting in many areas, for example tumor diagnostics.

Institute of Medical Biometry and Informatics, University Heidelberg:

The Institute of Medical Biometry and Informatics at the University Heidelberg contributes to teaching, advanced training and clinical research. Biometry is concerned with the methodology and realization of therapeutic-, diagnostic- and meta studies. Research subjects of medical informatics includes bioinformatics/systems biology, knowledge based diagnosis and therapy, the management of health data, as well as medical image processing and pattern recognition. In collaboration with the University Heilbronn, the institute is conducting Germany’s eldest curriculum on medical informatics.

Requests by journalists:
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | EurekAlert!
Further information:
http://www.med.uni-heidelberg.de

More articles from Medical Engineering:

nachricht LISA: Scientists introduce a new method of statistical inference in neuroimaging (fMRI)
16.10.2018 | Max-Planck-Institut für biologische Kybernetik

nachricht Researchers demonstrate first example of a bioelectronic medicine
09.10.2018 | Northwestern University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>