Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights into Micromillimeters

03.07.2008
New high-tech imaging center “TIGA” at the University of Heidelberg / Robot “NanoZoomer” shows high-resolution images of cells and tissue

“TIGA,” the new high-tech imaging center at the University of Heidelberg founded in cooperation with the Japanese company Hamamatsu, provides deep insights: a high-tech robot makes it possible for the first time to automatically reproduce and evaluate tissue slices only micromillimeters thick – an important aid for researchers in understanding cancer or in following in detail the effect of treatment on cells and tissue.

The Hamamatsu Tissue Imaging and Analysis (TIGA) Center is a cooperative effort between the Institutes of Pathology and of Medical Biometry and Informatics at the University of Heidelberg and the Japanese company Hamamatsu Photonics. In addition, it belongs to BIOQUANT, the research center for quantitative biology at the University of Heidelberg. At its core is the imaging robot “NanoZoomer” from Hamamatsu Photonics: the robot scans the tissue slices and displays them on the monitor for researchers at ultra high resolution and in various planes.

“Technically, this has brought the fully automatic evaluation of tissue changes and approaches for new therapy within our grasp,” states Professor Dr. Peter Schirmacher, Director of the Institute for Pathology at Heidelberg University Hospital. This would represent a new milestone in pathology.

Detailed images help understand diseases

Which proteins are formed to a greater degree in cancer cells? How is tumor tissue changed during radiation treatment? Thanks to the NanoZoomer’s high-resolution images and special evaluation programs, researchers in the future will be able to evaluate tissue and cell samples more quickly and accurately and gain important new insights for therapy tailored to the individual patient, for example for breast cancer.

In the future, the robot will be able to determine changes in cells and tissue fully automatically. “The NanoZoomer represents a quantum leap in tissue research,” says Dr. Niels Grabe of the Institute for Medical Biometry and Informatics and research director at the TIGA Center.

Virtual Tissue is modeled from data

The medical IT specialists use the NanoZoomer to evaluate huge quantities of data from tissues for their research. For example, Dr. Niels Grabe and his team used data to model virtual skin tissue. “On a computer model of human skin tissue we can test whether certain substances are toxic, for example,“ explains Dr. Grabe. “In the future, this could make it easier to develop potential new drugs.”

Hamamatsu recognized the many possible applications early on, so that new technological markets have now been opened up for them. “We are happy to have found two partners in the Heidelberg Institute of Pathology and the Institute of Medical Biometry and Informatics with whom we can develop concrete clinical uses and new applications for research,” said Hideo Hiruma, Managing Director of Hamamatsu Photonics, Japan.

Contact:

Dr. Niels Grabe
Research Director at the TIGA center
Tel.: +49 6221 / 56 5143
E-Mail: niels.grabe@med.uni-heidelberg.de

Professor Dr. Peter Schirmacher
Director of the Institute for Pathology
at Heidelberg University Hospital
Phone: +49 6221 / 56 2601
E-Mail: peter.schirmacher@med.uni-heidelberg.de

Hamamatsu Photonics, Germany and Japan:
Hamamatsu Germany is the German subsidiary of Hamamatsu Photonics K.K. (Japan), a leading manufacturer of devices for the generation and measurement of infrared, visible, and ultraviolet light. These devices include photodiodes, photomultiplier tubes, scientific light sources, infrared detectors, photoconductive cells, image sensors and integrated measurement systems for science and industry. The parent company is dedicated to the advancement of photonics through extensive research. This corporate philosophy results in state-of-the-art products which are used throughout the world in scientific, industrial, and commercial applications.

Institute of Pathology, University Heidelberg:

The Institute of Pathology at the University Heidelberg contributes to patient care, teaching, advanced training, quality management and research. Key task is the diagnostic evaluation of tissues (histology) and cell preparations (cytology). The Institute analyses more than 60.000 samples from operative and conservative medicine which are an elementary component of clinical diagnostics and therapy planning. The Institute is consulting in many areas, for example tumor diagnostics.

Institute of Medical Biometry and Informatics, University Heidelberg:

The Institute of Medical Biometry and Informatics at the University Heidelberg contributes to teaching, advanced training and clinical research. Biometry is concerned with the methodology and realization of therapeutic-, diagnostic- and meta studies. Research subjects of medical informatics includes bioinformatics/systems biology, knowledge based diagnosis and therapy, the management of health data, as well as medical image processing and pattern recognition. In collaboration with the University Heilbronn, the institute is conducting Germany’s eldest curriculum on medical informatics.

Requests by journalists:
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | EurekAlert!
Further information:
http://www.med.uni-heidelberg.de

More articles from Medical Engineering:

nachricht Faster detection of atrial fibrillation thanks to smartwatch
18.03.2019 | Universität Greifswald

nachricht A peek into lymph nodes
15.03.2019 | Tohoku University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>