Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimally Polarized

24.09.2014

Foundations of continuous hyperpolarization explained – new method could pave the way for mobile MRI devices

An international research team led by Dr. Jan-Bernd Hövener from the Medical Physics Section of the Department of Radiology at the Medical Center – University of Freiburg has developed a new, cost-efficient method for magnetic resonance imaging (MRI).

Now the scientists have elucidated the underlying mechanism of the new method in the renowned journal CHEMPHYSCHEM. As a comparison of theoretical simulations with experimental results demonstrates, the basic mechanism is now explained. The method could enable high-resolution MRI images even without expensive high-powered magnets.

The thorough investigation of all relevant factors is an important step toward understanding the new effect, which could lead to the development of new MRI devices for conducting cost-effective chemical analyses as well as precise diagnoses in remote areas – reason enough for CHEMPHYSCHEM to print the study on the inside cover.

Magnetic resonance imaging is a technique that can be used to create cross-sectional images of soft tissue structures inside the body without harmful radiation. MRI devices align a part of the magnetic moments of the hydrogen atoms in the body tissue in an artificial magnetic field and stimulate them with radio-frequency waves, whereupon they return to their original state.

Different signals are sent out depending on the structure and water content of the tissue, forming the basis for calculating the image. The technique usually requires very expensive magnets in order to achieve a sufficiently strong signal. The newly developed continuous hyperpolarization method enables MRI devices to align a much larger part of the hydrogen atoms in lower magnetic fields.

Even in a very weak magnetic field created with a simple battery, the signal is one hundred times stronger than in conventional MRI devices currently in use at hospitals. In addition, thanks to parahydrogen the polarization effect remains available for as long as needed: Normal hydrogen gas, whose atomic nuclei are in a special quantum state, causes the polarization to renew itself after each measurement by means of a chemical exchange reaction, thus enabling multiple images.

In their current study, the Freiburg researchers are searching for the factors responsible for influencing this effect of continuous hyperpolarization: “We’re looking for the optimal conditions for this method. The comparison between theoretical simulation and experimental results shows that the retention time (temperature) and concentration of the parahydrogen play a role as well as the strength of the magnetic field,” says Hövener, who conducts his research at the Medical Physics Section of the Department of Radiology at the Medical Center – University of Freiburg. “It was important to understand
this new effect before speculating about biomedical applications. Fortunately, this is now the case.”

Hövener’s research has attracted great interest: His publication last year in Nature Communications won him second place in the competition for the Klee Foundation Prize of the German Society for Biomedical Engineering (DGBMT), which will be awarded in October at DGBMT’s annual meeting in Hanover.

The German Research Foundation (DFG) is providing the Freiburg medical physicist funding to establish his own research group within the context of the Emmy Noether Program. Hövener has set a clear research goal for the group: “We want to develop new hyperpolarization methods and thus take on the challenges of modern diagnostics. Ultimately, our goal is to develop new methods for identifying and observing diseases earlier, more affordably, and better.”

Title of original publication: Continuous Re-hyperpolarization of Nuclear Spins Using
Parahydrogen: Theory and Experiment
doi: 10.1002/cphc.201402177
http://onlinelibrary.wiley.com/doi/10.1002/cphc.201402177/abstract

Contact:
Dr. Jan-Bernd Hövener
Hyperpolarization Group Leader
Medical Physics, Department of Radiology
Medical Center – University of Freiburg
Phone: +49 (0)761 270-93910
jan.hoevener@uniklinik-freiburg.de
www.hyperpolarisation.net
Twitter: @hyperpolarise

Inga Schneider | idw - Informationsdienst Wissenschaft
Further information:
http://www.uniklinik-freiburg.de

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>