Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better MRI scans of cancers made possible by TU Delft

13.01.2009
Researcher Kristina Djanashvili has developed a substance that enables doctors to get better MRI scans of tumours. On Tuesday 13 January, Djanashvili will be awarded a doctorate by TU Delft for her work in this field.

The medical profession’s ability to trace and visualise tumours is increasing all the time. Detection and imaging techniques have improved enormously in recent years.

One of the techniques that have come on by leaps and bounds is MRI. Patients who are going to have MRI scans are often injected with a ‘contrast agent’, which makes it easier to distinguish tumours from surrounding tissues. The quality of the resulting scan depends partly on the ability of this agent to ‘search out’ the tumour and induce contrast.

Better images
At TU Delft, postgraduate researcher Kristina Djanashvili has developed a new contrast agent with enhanced tumour affinity and contrast induction characteristics. In principle, this means that cancers can be picked up sooner and visualised more accurately.

The new agent is a compound incorporating a lanthanide chelate and a phenylboronate group substance. The lanthanide chelate ensures a strong, clear MRI signal, while the phenylboronate group substance ‘searches out’ cancerous tissue.

Water exchange
The lanthanide chelate influences the behaviour of water molecules, even inside the human body. It is ultimately the behaviour of the hydrogen nuclei in the water molecules that makes MRI possible and determines the quality of the image produced. The stronger the influence of the lanthanide chelate on the neighbouring hydrogen nuclei (the so-called water exchange) and the more hydrogen nuclei affected, the better the MRI signal obtained. Djanashvili has defined the methods for determining the water exchange parameters.
Sugar
Djanashvili has also provided her contrast agent with enhanced tumour-seeking properties by including a phenylboronate group substance. Phenylboronate has an affinity with certain sugary molecules that tend to concentrate on the surface of tumour cells. What makes the selected phenylboronate-containing agent special is its ability to chemically bond with the surface of a tumour cell.
Mice
Finally, Djanashvili has managed to incorporate the compound into so-called thermosensitive liposomes. A thermosensitive liposome forms a sort of protective ball, which opens (releasing the active compound) only when heated to roughly 42 degrees. This means that, by localised heating of a particular part of the body, it is possible to control where the compound is released. The positive results obtained from testing the new agent on mice open the way for further research.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>