Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diaphragm pacing in spinal cord injury successful in weaning patients from ventilators

10.02.2014
System gained nationwide attention when University Hospitals Case Medical Center's Dr. Onders implanted stimulator in actor Christopher Reeve

A new study published in the Journal of Trauma and Acute Care Surgery finds that diaphragm pacing (DP) stimulation in spinal cord-injured patients is successful not only in weaning patients from mechanical ventilators but also in bridging patients to independent respiration, where they could breathe on their own without the aid of a ventilator or stimulation.

The stimulation is provided by the Diaphragm Pacing System (DPS), a technology providing electrical stimulation to nerves running through the diaphragm, the major muscle involved in breathing. When stimulated, the diaphragm contracts, allowing patients to breathe more naturally than having air forced into their lungs as a mechanical ventilator would do. The system is implanted through minimally invasive laparoscopic surgery.

One of the inventors of DPS and an author of the new study is Raymond Onders, MD, of University Hospitals (UH) Case Medical Center. DPS gained national attention in 2003 when Dr. Onders, Director of Minimally Invasive Surgery at UH, implanted the system in the late actor Christopher Reeve, who had a traumatic spinal cord injury (SCI) from a horse-riding accident.

The new study examined the records of 29 patients, average age 31, at 16 hospitals in the United States where DP implantation is approved. SCIs were caused by a variety of accidents, including car accidents, diving, gunshot wounds, falls, and athletic injuries. Elapsed time from injury to surgery was 40 days, which was considerably shorter than an initial FDA trial in which patients did not have DP testing and surgery for more than a year after injury. All but two patients were men. A goal of this study was to determine if earlier testing and DP implants provided benefit.

Of the patients whose diaphragm muscles responded to stimulation, 16 of 22 patients (72 percent) were completely free of ventilator support in an average of 10 days. Of the remaining six patients, two had a delayed weaning of six months, three had partial weans using DP at times during the day (One patient successfully implanted went to a long-term acute care hospital and subsequently had life-prolonging measures withdrawn.) Seven of the 29 patients were found to have non-stimulatable diaphragms from nerve damage.

Eight patients (36 percent) had complete recovery of respiration, and DP wires were removed.

"This study provides several important observations," said Dr. Onders, who is also Professor of Surgery at Case Western Reserve University School of Medicine. "Most notably, laparoscopic diaphragm mapping – an electronic reading of the diaphragm nerves – is safe and can be performed in multiple centers with success. In addition, early diaphragm mapping can quickly determine if a phrenic nerve injury is complete, allowing for early ventilator planning and prevention of weaning trials if we find the patient will not be able to be weaned from the ventilator. Finally, DP can successfully wean traumatic cervical SCI patients as evidenced by 72 percent of the implanted patients being completely weaned from ventilators and 36 percent with complete recovery and DP removal.

"DP is a major step in improving the quality of life for patients who have spinal cord injuries and cannot breathe without the help of a ventilator," said Dr. Onders. "Based on testimonials that I've received from patients who have been in the clinical trials, DP provides patients with a freedom of mobility that they never imagined. They've sent photographs or videos themselves parachuting from planes, sailing solo, or enjoying rides at amusement parks with their families; activities impossible to do with a ventilator."

Traumatic spinal cord injuries (SCIs) that require chronic ventilator dependence are relatively rare: Less than four percent or 480 cases out of the estimated 12,000 traumatic SCIs occurring annually in the United States.

DPS has also been approved for patients with amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) and is being used in patients with other conditions as well.

DPS is made by Synapse Biomedical, Inc., a company co-founded by Dr. Onders and located in Oberlin, Ohio. Dr. Onders, UH Case Medical Center, and Case Western Reserve University have intellectual property rights in Synapse.

About University Hospitals

University Hospitals, the second largest employer in Northeast Ohio, serves the needs of patients through an integrated network of hospitals, outpatient centers and primary care physicians in 16 counties. At the core of our health system is University Hospitals Case Medical Center, one of only 18 hospitals in the country to have been named to U.S. News & World Report's most exclusive rankings list: the Best Hospitals 2013-14 Honor Roll. The primary affiliate of Case Western Reserve University School of Medicine, UH Case Medical Center is home to some of the most prestigious clinical and research centers of excellence in the nation and the world, including cancer, pediatrics, women's health, orthopaedics and spine, radiology and radiation oncology, neurosurgery and neuroscience, cardiology and cardiovascular surgery, organ transplantation and human genetics. Its main campus includes the internationally celebrated UH Rainbow Babies & Children's Hospital, ranked among the top children's hospitals in the nation; UH MacDonald Women's Hospital, Ohio's only hospital for women; and UH Seidman Cancer Center, part of the NCI-designated Case Comprehensive Cancer Center at Case Western Reserve University. UH Case Medical Center is the 2012 recipient of the American Hospital Association – McKesson Quest for Quality Prize for its leadership and innovation in quality improvement and safety.

George Stamatis | EurekAlert!
Further information:
http://www.uhhospitals.org

More articles from Medical Engineering:

nachricht Traumas change perception in the long term
19.08.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Stanford develops wireless sensors that stick to the skin to track our health
16.08.2019 | Stanford University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

OHIO professor Hla develops robust molecular propeller for unidirectional rotations

22.08.2019 | Life Sciences

127-year-old physics problem solved

22.08.2019 | Physics and Astronomy

Physicists create world's smallest engine

22.08.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>