Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing radically new technologies for X-ray systems

04.02.2015

Siemens is investigating entirely new concepts for X-ray systems. The aim is to achieve a radical increase in imaging resolution and to enable phase-contrast X-ray imaging. This entirely new technique helps, for instance, in the identification of tumors.

Moreover, examinations involving cardiovascular diseases can be carried out without contrast agents. Nearly one out of ten patients suffer from allergic reactions to these substances. A multi-year R&D project, which is scheduled to run until 2017, brings together experts from Siemens Healthcare und Corporate Technology and includes external partners. An article on this subject is now available on the online magazine "Pictures of the Future".

Instead of emitting electrons from 2,000-degree Celsius filaments as usual, the project's researchers are using a ring-shaped "cold cathode" of nanostructured carbon that operates at a high voltage and at room temperature. As is the case today, electrons are accelerated and collide with a target.

This target, however, is not the usual tungsten anode, which only converts about one percent of incoming energy into X-rays. The new conepts foresees of a jet of liquid metal as the new target. The metal consists of 95 percent lithium and 5 percent heavy elements such as bismuth or lanthanum. The latter produces short wavelength X-rays, the former acts as a coolant.

The energy of electrons leaving the liquid-metal-jet anode can potentially be reclaimed. The result is that the X-ray tube requires less than half the electricity and cooling of previous devices.

20-fold higher imaging resolution

The new tube can achieve a much higher energy density at the target. At the same light intensity, the focus of the new X-ray source is 400 times smaller than in conventional X-ray tubes, which results in a 20-fold higher imaging resolution. That, in turn, is the prerequisite for an entirely new imaging technique: phase-contrast X-ray imaging.

Whereas conventional radiography simply records whether X-rays penetrate certain tissue or not, phase-contrast imaging measures the influence of the tissue on the phase of the X-ray beam. This phase shift varies depending on the refractive power of the tissue through which the radiation passes. This approach would make it possible to distinguish different soft tissues, in particular fat from water or iron levels in blood.

This is essential, for instance, in order to easily identify a tumor in an early stage. Blood vessels could be made visible in this way without contrast agents. To be able to measure these phase shifts, Siemens is using for the first time a wavefront sensor of the kind used in optics and astronomy for X-ray light.

Siemens' next-generation X-ray systems would not only be very efficient to operate and would offer better performance, but would be ideal for minimally invasive surgery. Surgeons performing procedures inside the body via catheter would use X-ray imaging to know exactly where the catheter was located. If the catheter were navigated using magnetic fields, conventional X-ray tubes would not be used because they are sensitive to magnetic fields. The new systems would not have this drawback, but would be able to provide images that would be more useful diagnostically.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Medical Engineering:

nachricht Faster detection of atrial fibrillation thanks to smartwatch
18.03.2019 | Universität Greifswald

nachricht A peek into lymph nodes
15.03.2019 | Tohoku University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

How heavy elements come about in the universe

18.03.2019 | Physics and Astronomy

Robot arms with the flexibility of an elephant’s trunk

18.03.2019 | Power and Electrical Engineering

Microbes can grow on nitric oxide (NO)

18.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>