Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combined arterial imaging technology reveals both structural and metabolic details

07.11.2011
Dual imaging approach could improve diagnosis, treatment of coronary artery disease

A new device that combines two microimaging technologies can reveal both the detailed anatomy of arterial linings and biological activities that, in coronary arteries, could indicate the risk of heart attacks or the formation of clots in arterial stents.

In their report receiving early online release in Nature Medicine, Massachusetts General Hospital (MGH) investigators describe using an intra-arterial catheter combining both optical frequency-domain imaging (OFDI) and near-infrared fluorescence (NIRF) imaging to obtain simultaneous structural and molecular images of internal arterial surfaces in rabbits.

"The ability to measure both microstructural and molecular information from the same location in the artery wall could provide a much better diagnostic tool for assessing vascular pathology, information that is highly relevant for diagnosing coronary artery disease, vulnerable plaque and evaluating stent healing," says Gary Tearney, MD, PhD, of the Wellman Center for Photomedicine and the MGH Pathology Department, co-senior author of the article.

Developed at the Wellman Center, OFDI utilizes a fiberoptic probe with a constantly rotating laser tip to create detailed molecular images of interior surfaces such as arterial walls. While OFDI can be used to guide procedures like coronary artery angioplasty and to confirm the correct positioning of metal stents inserted to keep cleared arteries open, its ability to determine important details of stent healing is limited. Properly healed stents become covered with endothelium, the same tissue that normally coats the arterial surface; but stents can become coated with the clot-inducing protein fibrin, which may put patients at risk for stent thrombosis – a clot that blocks bloodflow through the stent – and OFDI cannot determine the molecular composition of tissue covering a stent.

Intravascular NIRF technology was developed in the MGH Cardiovascular Research Center (CVRC), in collaboration with colleagues at the Technical University of Munich, and uses special imaging agents to detect cells and molecules involved in vascular processes like clotting and inflammation. Recognizing the potential advantage of combining both technologies, the Wellman researchers worked with the MGH-CVRC team, led by Farouc Jaffer, MD, PhD, of the MGH Heart Center to develop an integrated OFDI-NIRF imaging system incorporated in the same intravascular probe used for OFDI alone.

The team first confirmed that the system could provide detailed structural images of a stent implanted in a cadaveric human coronary artery and could accurately identify the presence of fibrin on the stent. In a series of experiments in living rabbits, the OFDI-NIRF system was able to detect fibrin on implanted stents – including areas where it was not detected by OFDI alone – and to identify the presence of both atherosclerotic plaques and enzymatic activity associated with inflammation and plaque rupture. The enzyme signal detected by NIRF was not uniform throughout the imaged plaques, indicating biological differences that could be relevant to prognosis and treatment planning.

"At present we are not able to predict which patients may develop stent thrombosis, but integrated OFDI-NIRF can assess many key factors linked to the risk of clot formation," says Jaffer, co-senior author of the Nature Medicine report. "If OFDI-NIRF is validated in clinical studies, patients at risk for stent thrombosis could undergo a 'stent checkup' to determine how well the stent is healing. Patients with unhealed stents could be advised to take or continue taking specific anti-clotting medications. Patients with well-healed stents, on the other hand, could potentially discontinue anti-clotting medications, which can cause excess bleeding." Clinical adoption of the integrated technology will require FDA approval of the molecular contrast agents used in NIRF.

Tearney is a professor of Pathology and Jaffer an assistant professor of Medicine at Harvard Medical School. Hongki Yoo, PhD, of the MGH Wellman Center and Jin Won Kim, MD, PhD, MGH Cardiovascular Research Center, are co-lead authors of the Nature Medicine report. Additional co-authors are Milen Shishkov, PhD, Eman Namati, PhD, and Brett Bouma, PhD, Wellman Center; Jason McCarthy, PhD, MGH Center for Systems Biology; Theodore Morse, PhD, and Roman Shubochkin, PhD, Boston University Photonics Center; and Vasilis Ntziachristos, PhD, Technical University of Munich.

The study was supported by grants from the National Institutes of Health, the Center for Integration of Medicine and Innovative Technology, the American Heart Association, Howard Hughes Medical Institute and the CardioVascular Research Foundation. Massachusetts General Hospital has filed patent applications on the combined OFDI and NIRF technology.

Celebrating the 200th anniversary of its founding in 1811, Massachusetts General Hospital (http://www.massgeneral.org) is the original and largest teaching hospital of Harvard Medical School. MGH conducts the largest hospital-based research program in the United States, with an annual research budget of nearly $700 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>