Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Logistics For The Superjumbo

09.07.2004


The Airbus A380 will be the world’s biggest passenger airplane and it is already a perfect example of global cooperation. The Fraunhofer IML has ensured that the Stade plant near Hamburg will benefit from an optimal material flow and logistics concept.



555 passengers on two decks will be able to travel for 14,800 kilometers non-stop in the Airbus A380 - almost from one end of the Earth to the other. The air route from Berlin to Wellington in New Zealand, for example, covers a distance of about 16,000 kilometers. And although the superjumbo has not yet flown, it is already popular: eleven airlines have ordered 129 planes to carry passengers or freight. 40,000 people throughout Europe are involved in the production of the superjumbo. The manufacture of its various parts is taking place at 15 plants in four countries. In France, individual parts and components are being produced for the cockpit and the section of fuselage to the rear of the cockpit. The Spanish plants are manufacturing the horizontal stabilizers. The UK is supplying the wings and wing components. Seven plants in Germany are involved in parts production and assembly of the fuselage sections, wing equipment, vertical stabilizers and components for the interior equipment and cabin systems. Final assembly takes place at the plant in Toulouse. This is where all the transports converge.

So that the superjumbo can be rolled out onto the runway on time for its maiden flight, production and assembly at each individual plant must run extremely smoothly. “This major project depends on the efficiency of each plant involved,” says Bernd Duve of the Fraunhofer Institute for Material Flow and Logistics IML. “The components - be they wings, fuselage sections, turbines or vertical stabilizers - are so gigantic that they surpass the dimensions of any aircraft built before. The plant in Stade near Hamburg therefore had to be converted and expanded. We were given the job of reorganizing the material flow to meet the new requirements.”


Work started on the new logistics concept in May 2002. The IML team coordinated and supported several projects. One task was to establish the internal logistics team at Airbus; another was to prepare the overall logistics concept. In a preliminary study, an overview of all current and planned issues was prepared. “There was a lot to do,” recalls Achim von Arciszewski, Vice President Assembly / Vertical Tailplane at Airbus Deutschland. “With the help of the Fraunhofer IML, we adapted and optimized the processes in order of priority. For example, we introduced a new site transport concept with side stackers and designed special components cars for simple and speedy transfer.” The reason: high levels of cleanness are required in aircraft manufacture. Vehicles used outside are not allowed to enter the assembly halls. They would bring in too much dirt and dust.

Johannes Ehrlenspiel | alfa
Further information:
http://www.fraunhofer.de

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>