Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study seeks to identify and minimize danger to aviation from cosmic radiation

23.10.2003


Scientists have long known of the potential risk from cosmic rays and other aspects of space weather, such as streams of protons from the Sun, to airline electronic systems, passengers, and crews. It has not been feasible to quantify this risk, however, as systematic data are lacking on the actual amount of rays and the charged particles and neutrons they create in Earth’s atmosphere that are encountered during typical flights. Researchers have now begun collecting that information, thanks to a newly developed instrument, the Low Linear-Energy-Transfer Radiation Spectrometer (LoLRS).



The need to know the precise level of cosmic and solar radiation along air routes has become more acute, as recent generations of commercial aircraft use "fly-by-wire" control systems, managed by on-board computers, which are subject to damage by high radiation levels. Future aircraft will employ even more sensitive technologies, and will therefore be more susceptible to damage.

"This substantially increases the need to improve the definition of the atmospheric radiation field as a function of location and time, and to reduce the significant uncertainties associated with present day predictions," says Epaminondas G. Stassinopoulos of NASA’s Goddard Space Flight Center, lead researcher of the project. Their report is one of the first papers published in the American Geophysical Union’s new journal, Space Weather.


With the cooperation of Evergreen International Airlines, which flies long distance cargo routes, LoLRS instruments have been flown aboard Boeing 747s across the Atlantic and Pacific Oceans, across the United States, the length of Africa, and, more recently, in the Arctic. Repetitive flights over the same routes have enabled the scientists to begin studying the long term effects of solar and environmental influences at aviation altitudes.

During each flight, every change in the plane’s altitude and direction is recorded, because such factors as weather and traffic affect the exact route and altitude of a flight, regardless of the original flight plan. It is essential for the researchers to know the precise location, altitude, and time of each radiation measurement.

Ultimately, Stassinopoulos and his colleagues hope to produce global maps that reflect the dynamic nature of the atmospheric radiation field. This will require the collection of a large quantity of data, and the researchers are therefore developing techniques for analyzing the collected information. The research will involve both aircraft and high altitude balloons that circle the polar regions for long periods.

The preliminary tests have confirmed that doses of radiation from cosmic rays and the particles they create are more intense at higher altitudes and at higher latitudes; that is, they are strongest in the Arctic and Antarctic regions. This is particularly true during solar storms, during which large quantities of charged particles reach Earth’s atmosphere. The scientists hope that the new study will go far beyond previous research in this field and facilitate the construction of models that would be of real use for planners of aircraft routes.


AGU is providing free, open access to the journal Space Weather from its launch, planned for 28 October, through 31 March 2004. The journal will include technical articles, news items, feature stories, editorials, and opinion articles. A quarterly paper edition will print a selection of the material previously published online. Space Weather may be found at http://www.agu.org/journals/spaceweather. For further information, see AGU Press Release 03-05 at http://www.agu.org/sci_soc/prrl/prrl0305.html

Harvey Leifert | AGU
Further information:
http://www.agu.org/sci_soc/prrl/prrl0305.html
http://www.agu.org/

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>