Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zooming-in on protein teamwork

03.11.2017

The surface of every cell contains receptors that react to external signals similar to a “gate”. In this way, the cells of the innate immune system can differentiate between friend and foe partly through their “toll-like receptors” (TLRs). Two parts of this gate often work together here, as researchers at Goethe University Frankfurt and their British colleagues have now found out with the help of a new super-resolution optical microscopy technique.

The surface of every cell contains receptors that react to external signals similar to a “gate”. In this way, the cells of the innate immune system can differentiate between friend and foe partly through their “toll-like receptors” (TLRs). Two parts of this gate often work together here, as researchers at Goethe University Frankfurt and their British colleagues have now found out with the help of a new super-resolution optical microscopy technique.


Left: Conventional light microscopy is an useful tool in visualising biological structures and processes. However, its resolution is not sufficient to study events occurring at molecular scale. The image on the left shows the nuclei of brain tumour cells (yellow: nuclei containing DNA) with Toll-like receptors 4 localised at the cell surface (cyan spots). Although many TLR4 can be clearly seen, the spatial resolution does not allow determination of single receptor units. Middle: Super-resolution microscopy greatly improves the spatial resolution and allows detection of single TLR4 clusters (cyan) at the surface of the cells. However, even at this superior resolution, it is not possible to distinguish between monomers and dimers of the receptor. Right: Crystal structure of a TLR4 dimer. The novel analysis method developed by the consortium is able to provide information allowing differentiating between receptor monomers and dimers.

Image rights: Widera/Heilemann

When the German Nobel Prize winner Christiane Nüsslein-Volhard discovered receptors in the fruit fly (Drosophila melanogaster) in the 1990s that transduced signals from the cell surface into a cellular response, she was amazed. She nicknamed the receptors “toll” (amazing) and this term has meanwhile become firmly established in scientific literature.

Since then, similar receptors (toll-like receptors) have also been discovered in animals and humans. They recognize bacteria, viruses and fungi and thus ensure that our body reacts to infections in a suitable way. By contrast, de-regulated TLRs can lead to chronic inflammatory conditions and cancer.

Experiments conducted so far indicated that TLRs are activated by a chemical signal that causes two proteins to cluster together as dimers. This process, which is known as “dimerization”, appears to play a pivotal role in a cell’s fate: It can decide whether the cell survives, dies or moves within the body.

Because dimerization takes place on a molecular scale that cannot be captured using conventional microscopy techniques, researchers have to date been dependent on indirect measuring methods. These were, however, prone to error and yielded diverging results. This has now changed thanks to the new super-resolution optical microscopy technique.

In the forthcoming issue of “Science Signaling”, the working groups led by Professor Mike Heilemann of Goethe University Frankfurt and by Dr. Darius Widera and Dr. Graeme Cottrell of the University of Reading in England describe how they have studied the organization of the TLR4 receptor on the cell surface in molecular resolution.

In a first step, they used a super-resolution microscope with a resolution about 100 times better than a standard fluorescence microscope. Since this was still not sufficient to make single receptor molecules in a tiny protein dimer visible, the researchers developed a more sophisticated analysis of the optical signal. In this way they were able to zoom in closer on the super-resolution images and examine under which conditions TLR4 forms a monomer or a dimer. The researchers could also detect which chemical signals from different pathogens modulate the receptors’ patterns.

The researchers hope that their work will lead in future to a better understanding of how TLR dimerization affects the decision between the life or death of a cell. It might also be possible to determine how pharmaceutical ingredients targeted at TLRs influence the behavior of cancer cells.

“It is also conceivable that this approach will help us in future to understand better the fundamental biological processes that regulate the immune system in health and disease. At the same time, this microscopy method is also applicable to other membrane proteins and many similar questions,” explains Professor Mike Heilemann from the Institute of Physical and Theoretical Chemistry at Goethe University Frankfurt.

Publication:
Carmen L. Krüger, Marie-Theres Zeuner, Graeme S. Cottrell, Darius Widera, Mike Heilemann: Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization, Science Signaling, doi: 10.1126/scisignal.aan1308

A picture can be downloaded under: http://www.muk.uni-frankfurt.de/68944753

Caption: Left: Conventional light microscopy is an useful tool in visualising biological structures and processes. However, its resolution is not sufficient to study events occurring at molecular scale. The image on the left shows the nuclei of brain tumour cells (yellow: nuclei containing DNA) with Toll-like receptors 4 localised at the cell surface (cyan spots). Although many TLR4 can be clearly seen, the spatial resolution does not allow determination of single receptor units. Middle: Super-resolution microscopy greatly improves the spatial resolution and allows detection of single TLR4 clusters (cyan) at the surface of the cells. However, even at this superior resolution, it is not possible to distinguish between monomers and dimers of the receptor. Right: Crystal structure of a TLR4 dimer. The novel analysis method developed by the consortium is able to provide information allowing differentiating between receptor monomers and dimers.

Image rights: Widera/Heilemann

Further information: Professor Mike Heilemann, Institute of Physical and Theoretical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, Riedberg Campus, Tel.: +49(0)69-798- 29736, Heilemann@chemie.uni-frankfurt.de.

Tobias Lang | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-frankfurt.de

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>