Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zeroing in on more powerful enzymes for degrading persistent pollutants

17.11.2011
For the first time, researchers have identified two important strategies for optimizing the effects of the enzymes involved in degrading persistent pollutants such as PCBs.

These scientific advances, achieved by Professor Michel Sylvestre of Centre INRS–Institut Armand-Frappier in conjunction with U.S. and Indian researchers, will serve not only to help develop effective biocatalysts for resolving environmental pollution problems, but also to synthesize new chemical compounds of biopharmaceutical interest.

Certain chemical components, like PCBs, PAHs, and CFCs, are toxic biosphere pollutants that are resistant to microbial degradation. Microbial catabolic enzymes are unable to effectively metabolize them. The results obtained by Professor Sylvestre and his colleagues open up new possibilities for boosting the effectiveness of these enzymes to oxidize such compounds.

Professor Sylvestre's research team has shown that it is possible to obtain more flexible mutant enzymes by replacing some of their amino acids. Moreover, they have updated a sophisticated mechanism that helps boost the enzyme's performance not only with regard to the natural substrate, but also any other substrates it can metabolize. As such, more effective new enzymes can be developed using genetic engineering.

"From a green chemistry perspective, the results of our research could allow us to apply these enzymes to biocatalysis processes to synthesize biologically active compounds (such as flavonoids) that have strong antioxidant properties," explained Professor Michel Sylvestre, also an enzyme engineering specialist.

The results were published in the following works: Mohammadi, M., Viger, J.F., Kumar, P., Barriault, D., Bolin, J. T., Sylvestre, M. 2011. "Retuning Rieske-type oxygenase to expand substrate range." J. Biol Chem. 286, 27612-27621. http://www.jbc.org/content/286/31/27612.abstract?sid=9a7395c8-4e4c-460a-a69a-932c85d04095

Kumar, P., Mohammadi, M., Viger, J.F., Barriault, D., Gomez-Gil, L., Eltis, L.D., Bolin, J. T., and Sylvestre, M. 2011. "Structural insight into the expanded PCB-degrading abilities of a biphenyl dioxygenase obtained by directed evolution." J. Mol. Biol. 405, 531-547. http://www.sciencedirect.com/science/article/pii/S002228361001209X

Dhindwal, S., D. N. Patil, M. Mohammadi, M. Sylvestre, S. Tomar, and P. Kumar. 2011. "Biochemical studies and ligand bound structures of biphenyl dehydrogenase from Pandoraea pnomenusa strain B-356 reveal a basis for broad specificity of the enzyme." J. Biol. Chem. 286, 37011-37022. http://www.jbc.org/content/286/42/37011.abstract?sid=9a7395c8-4e4c-460a-a69a-932c85d04095

Institut national de recherche scientifique (INRS) is a graduate and postgraduate research and training university. One of Canada's leading research universities in terms of grants per professor, INRS brings together some 150 professors and close to 700 students and postdoctoral fellows in its centres in Montreal, Quebec City, Laval, and Varennes. INRS research teams conduct fundamental research essential to the advancement of science in Quebec as well as internationally and play a critical role in developing concrete solutions to problems facing our society.

Gisele Bolduc | EurekAlert!
Further information:
http://www.inrs.ca

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>