Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yellow Biotechnology: Using plants to silence insect genes in a high-throughput manner

02.02.2012
Using virus vector-mediated RNAi enables scientists to rapidly study the function of insect genes

Yellow Biotechnology refers to biotechnology with insects − analogous to the green (plants) and red (animals) biotechnology. Active ingredients or genes in insects are characterized and used for research or application in agriculture and medicine.


Nicotine-resistant larvae of the Tobacco hornworm Manduca sexta have become a new tool for investigating unknown gene functions in Lepidoptera – thanks to a novel RNAi-based procedure. Courtesy of Jan-Peter Kasper

Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, are now using a procedure which brings forward ecological research on insects: They study gene functions in moth larvae by manipulating genes using the RNA interference technology (RNAi). RNAi is induced by feeding larvae with plants that have been treated with viral vectors. This method called “plant virus based dsRNA producing system” (VDPS) increases sample throughput compared to the use of genetically transformed plants.

Natural toxins against herbivores

More than 200,000 insects species are herbivores. They depend on plants for food and have adapted their metabolism accordingly in the course of evolution to render plant defenses, such as the toxins plants produce to fend off herbivores, ineffective. The operating instructions of these detoxification processes are coded in different genes. Insects have evolved an enormous diversity of adaptation mechanisms; they colonize most habitats on this planet – which makes them interesting research objects in ecological studies. Which insect species attack which plants species? Which toxins or signaling substances are involved? Has the insect species adapted to one specific plant species or is it a food generalist? Interesting for agriculture: Which genes allow particular pest insects, such as the pollen beetle Meligethes aeneus or the Western corn rootworm Diabrotica virgifera virgifera, to be so destructive to crop plants? Knowing these detoxification genes and switching them off with the consequence that plant toxins are no longer effective, is currently a research subject in plant breeding. First success stories have already been reported – thanks to the use of RNAi technology.

Scientists at the Max Planck Institute for Chemical Ecology examined a well-known plant toxin: nicotine. Plants of the species Nicotiana attenuata (coyote tobacco) produce nicotine as a defensive substance against herbivores. However, it does not have any toxic effects on their worst enemy: larvae of the tobacco hornworm Manduca sexta. The insect is resistant against this alkaloid; genes that encode nicotine-catabolizing enzymes may be responsible for its resistance. These so called CYP genes are involved in the formation of cytochrome P450 enzymes; the expression of some of these genes is increased as soon as the insect larvae are exposed to nicotine in their food. Ian Baldwin and his team identified the DNA sequences of CYP genes in Manduca sexta and were able to switch off these genes using RNAi technology, but expressed in the plant.

Using plants to silence insect genes

RNA interference (RNAi) is triggered by the production of double-stranded RNA (dsRNA) comprising about 300 base pairs in the cells of tobacco plants. If larvae feed on these plant, the RNA is released in the insect gut. In the experiments, the dsRNA harbored the sequence of the insect gene,CYP6B46, a special cytochrome P450 oxidoreductase specific for Manduca sexta larvae. In a next step, the dsRNA was enzymatically broken down into smaller RNA segments; a special enzyme complex called RISC (RNA-induced silencing complex), which carries several of these RNA segments, specifically binds to the messenger RNA (mRNA) of the CYP6B46 gene and disassembles the mRNA in such a way that the cytochrome P450 enzyme cannot be produced anymore. “We were impressed by the high specificity of these RNAi experiments. The analysis of mRNA transcripts of closely related CYP6 genes revealed that only the CYP6B46 gene was silenced. This means that there was no collateral damage from the procedure: the gene silencing worked on only one targeted gene,” says Ian Baldwin.

The use of additional CYP RNAi probes revealed further interesting results: Young caterpillars which had ingested dsRNA of the CYP4M3 gene gained significantly less weight within 14 days in comparison to larvae reared on control plants – very likely a consequence of the nicotine and its toxic effect which had been restored by switching off the CYP gene. The RNAi experiments had been conducted using plant viral vectors. Unlike genetically transformed tobacco plants in which CYP dsRNA is produced constitutively, the virus vector-based technique provides dsRNA transiently produced in wildtype tobacco plants. Both methods worked well but the “plant virus-based dsRNA producing system” (VDPS) allows for a throughput of RNAi samples that is four times faster. Many unknown functions of different insect genes involved in the adaptation of insects to their environment can now be analyzed using the VDPS technique.
However, it is still unclear how the individual steps in the RNAi mechanism – from producing dsRNA in the plant cell via their uptake in the insect gut to the silencing of the detoxification genes – are accomplished to induce a maximum effect. One experiment provided some interesting information: If the enzymatic step which dices dsRNA into small fragments is inhibited in the experimental plants, the amount of transcripts of the detoxification gene was reduced even further. Therefore the plant mediated RNAi procedure may be more effective, if the caterpillars ingest complete dsRNA instead of smaller diced RNA segments. [JWK, AO]

Original Publication:
Kumar, P., Pandit, S.S., Baldwin, I.T.: Tobacco Rattle Virus vector: A rapid and transient means of silencing Manduca sexta genes by plant mediated RNA interference. PLoS ONE, DOI: 10.1371/journal.pone.0031347

Further Information:
Prof. Dr. Ian T. Baldwin, MPI for Chemical Ecology, Jena
Tel.: 03641 - 57 1100, baldwin@ice.mpg.de
Picture Material:
Angela Overmeyer M.A., Tel. 03641 - 57 2110, overmeyer@ice.mpg.de
or Download via http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>