Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why it doesn’t get dark when you blink

25.09.2018

Understanding how perception and memory interact

Every five seconds we close our eyes and blink to moisten them. During this brief moment no light falls on our retina yet it is not constantly dark and we continue to observe a stable picture of our environment. The brain seems to remember the percepts that have just happened.


Graphical representation of the human brain. The medial prefrontal cortex is highlighted in green. It shows the places where brain activity was measured.

Caspar M. Schwiedrzik


Dr. Caspar Schwiedrzik, neuroscientist at the German Primate Center and at the University Medical Center in Göttingen, Germany.

Karin Tilch

Caspar Schwiedrzik and Sandrin Sudmann, neuroscientists at the German Primate Center and the University Medical Center Göttingen, have in cooperation with colleagues from the United States performed studies on epilepsy patients to determine where this memory is situated in the brain and how it works. They have identified a brain area that plays a crucial role in perceptual memory. This finding enables a better understanding of the interaction of perception and memory (Current Biology).

Even though we constantly blink and move our head and eyes, we still see our world as a stable, unified whole. It must therefore be possible for the brain to retain visual information for a short period of time and then put it together to form a conclusive image without interruptions. Caspar Schwiedrzik and his team of neuroscientists suspected that a specific brain region known as the medial prefrontal cortex which plays an important role in short-term memory and decision-making may be a key player in this process.

At New York University the scientists had the opportunity to study this region of the brain in patients with epilepsy. To treat their disease, electrodes were temporarily implanted in the brain of these patients. Subjects were shown a dot lattice on a screen and were asked to indicate their perception of the orientation (for example horizontal or vertical) of the points.

They were then shown a second dot lattice and were asked to indicate the orientation of the points. If both orientations were the same, this was interpreted as an indication that the subjects used the information from the first round to establish a conclusive percept in the second round. While the subjects performed the task, their neural activity in the prefrontal cortex was recorded. In one of the subjects a section of the superior frontal gyrus was removed due to an earlier illness and she was unable to store the visual information.

"Our research shows that the medial prefrontal cortex calibrates current visual information with previously obtained information and thus enables us to perceive the world with more stability, even when we briefly close our eyes to blink," says Caspar Schwiedrzik, first author of the study and scientists at the German Primate Center and at the University Medical Center Göttingen.

This is not only true for blinking but also for higher cognitive functions. "Even when we see a facial expression, this information influences the perception of the expression on the next face that we look at," says Schwiedrzik.

"We were able to show that the prefrontal cortex plays an important role in perception and in context-dependent behavior," says Schwiedrzik, summarizing the findings of the study. In further studies, the researchers want to investigate, among other things, the role that confidence in one's own perception plays in perceptual memory.

Contact and suggestion for editors

Dr. Caspar M. Schwiedrzik
Phone: +49 (0) 551 39-12358
Email: cschwiedrzik@dpz.eu

Karin Tilch (Communication)
Phone: +49 (0) 551 3851-335
Email: ktilch@dpz.eu

Wissenschaftliche Ansprechpartner:

Dr. Caspar M. Schwiedrzik
Phone: +49 (0) 551 39-12358
Email: cschwiedrzik@dpz.eu

Originalpublikation:

Schwiedrzik C M et al. (2018): Medial prefrontal cortex supports perceptual memory. Current Biology 28, R1-R3, September 24, 2018

Weitere Informationen:

http://medien.dpz.eu/webgate/keyword.html?currentContainerId=4481 - Link to download printable pictures

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Organized chaos in the enzyme complex: surprising insights and new perspectives
06.07.2020 | Max-Planck-Institut für Entwicklungsbiologie

nachricht Gut bacteria improve type 2 diabetes risk prediction
06.07.2020 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Coupled hair cells in the inner ear – „Together we are strong!“

06.07.2020 | Health and Medicine

Innovations for sustainability in a post-pandemic future

06.07.2020 | Social Sciences

Carbon-loving materials designed to reduce industrial emissions

06.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>