Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whispering bats are 100 times louder than previously thought

15.12.2008
Whispering bats are shrieking

Annemarie Surlykke from the University of Southern Denmark is fascinated by echolocation. She really wants to know how it works.

Surlykke equates the ultrasound cries that bats use for echolocation with the beam of light from a torch: you won't see much with the light from a small bulb but you could see several hundred metres with a powerful beam. Surlykke explains that it's the same with echolocating bats.

Some have big powerful calls for perception over a long range, while others are said to whisper; which puzzled Surlykke. How could 'whispering' bats echolocate with puny 70decibel cries that barely carry at all? Teaming up with her long time collaborator Elizabeth Kalko from the Smithsonian Tropical Research Institute and student Signe Brinkløv, Surlykke decided to measure the volume of a pair of whispering bat species' calls to find out how loud the whisperers are. They publish their discovery that whispering bats are really shrieking in The Journal of Experimental Biology on 12th December 2008 at http://jeb.biologists.org.

Travelling to the Smithsonian Research Institute's Barro Colorado Island in Panama, Surlykke decided to focus on two whispering members of the Phyllostomidae family: Artibeus jamaicensis and Macrophyllum macrophyllum. According to Surlykke, the Phyllostomidae family of bats are unique because of their remarkably diverse lifestyles and diets. Some feed on fast moving insects while others feast on fruit buried in trees, making them an ideal family to study to find out how echolocation works.

But measuring the volume of the bat's echolocation calls was extremely challenging. If Surlykke was going to get true volume measurements from hunting bats on the wing, she would have to be certain that the bats were facing head on and that she could measure their distance from the microphone that recorded the sound so that she could correct for the volume lost as the call travelled to the microphone. Setting up an array of four microphones, the team recorded 460 cries, which Surlykke eventually whittled down to 31 calls for M. macrophyllum and 19 for A. jamaicensis that she could use.

Correcting the volume measurements, Surlykke was delighted to find that far from whispering, the bats were shrieking. The tiny insectivore M. macrophyllum registered a top volume of 105decibel, while fruit feeding A. jamaicensis broke the record at 110decibel, a remarkable 100 times louder than a 70decibel bat whisper and almost twice as loud as A. jamaicensis.

Surlykke suspects that she can explain the differences in the animals' volumes by their different lifestyles. She explains that the relatively large A. jamaicensis feeds on fruit, which it probably locates through a combination of senses, including smell and short-range echolocation whispers. But the bats have to search over large areas to find fruiting trees, and Surlykke suspects that the bat uses its high volume, well-carrying shrieks for orientation in their complex forest environment.

However, tiny M. macrophyllum's lifestyle is completely different. They hunt for insects over water, scooping them up with their tail. Surlykke says that she suspected that M. macrophyllum would be louder because she couldn't see how the animals could locate moving insects with a low intensity echolocation call, but admits that she was amazed that they were so much louder and that they could also adjust the volume to match their prey.

Kathryn Phillips | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>