Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When one reference genome is not enough

21.12.2017

Much of the research in the field of plant functional genomics to date has relied on approaches based on single reference genomes. But by itself, a single reference genome does not capture the full genetic variability of a species. A pan-genome, the non-redundant union of all the sets of genes found in individuals of a species, is a valuable resource for unlocking natural diversity. However, the computational resources required to produce a large number of high quality genome assemblies has been a limiting factor in creating plant pan-genomes.

Having plant pan-genomes for crops that are important for fuel and food applications would enable breeders to harness natural diversity to improve traits such as yield, disease resistance, and tolerance of marginal growing conditions.


A single reference genome is not enough to harness the full genetic variation of a species so pan-genomes of crops would be extremely useful. The phenotypic diversity of Brachypodium plants is demonstrated in this image, which is associated with a news release for a Nature Communications paper in which an international team led by DOE Joint Genome Institute researchers gauged the size of a plant pan-genome using the model grass Brachypodium distachyon.

Credit: John Vogel

In a paper published December 19, 2017 in Nature Communications, an international team led by researchers at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory (Berkeley Lab), gauged the size of a plant pan-genome using Brachypodium distachyon, a wild grass widely used as a model for grain and biomass crops. As one of the JGI's Plant Flagship Genomes, B. distachyon ranks among the most complete plant reference genomes.

"There are a vast number of genes that are not captured in a single reference genome," added study senior author John Vogel, head of the JGI's Plant Functional Genomics group. "Indeed, about half of the genes in the pan-genome are found in a variable number of lines." Working toward the primary goal of accurately estimating the size of a plant pan-genome, Vogel and his colleagues performed whole-genome de novo assembly and annotation of 54 geographically diverse lines of B. distachyon, yielding a pan-genome containing nearly twice the number of genes found in any individual line.

"The genome of a species is a collection of genomes, each with their own unique twist," added JGI bioinformaticist and study first author Sean Gordon. "Now knowing that focusing on a single reference genome leads to incomplete and biased estimates of genetic diversity and ignores genes potentially important for breeding applications, we should better incorporate multiple references in future studies of natural diversity."

Moreover, genes found in only some lines tend to contribute to biological processes (e.g., disease resistance, development) that may be beneficial under some environmental conditions, whereas genes found in every line usually underpin essential cellular processes (e.g., glycolysis, iron transport).

"This means that the variable genes are being preferentially retained if they are beneficial under some conditions. These are exactly the types of genes that breeders need to improve crops." Vogel said.

In addition, genes found in only a subset of lines displayed faster rates of evolution, lay closer to transposable elements (thought to play a key role in pan-genome evolution), and were less likely to be found in the same chromosomal location as functionally equivalent genes in other grasses.

The sequence assemblies, gene annotations and related information can be downloaded from the project website BrachyPan: brachypan.jgi.doe.gov. The Brachypodium distachyon genome is available on the JGI Plant Portal Phytozome: phytozome.jgi.doe.gov.

###

Key collaborators on the project include Pilar Catalan and Bruno Contreras-Moreira with the University of Zaragoza in Spain, who performed population and evolutionary analysis, and clustering genes to help create the pan-genome, respectively. Additional key collaborators include Richard Amasino and Daniel Woods with the University of Wisconsin-Madison and the Great Lakes Bioenergy Research Center, a DOE Bioenergy Research Center, who correlated pan-genes with flowering and vernalization phenotypes.

Other JGI personnel who contributed to the study include: Shengqiang Shu, who annotated the genomes and looked for missed pan-genes in the reference; Wendy Schackwitz, Joel Martin, and Anna Lipzen, who detected variants with respect to the reference genome; Jeremy Phillips, who helped create gene families; Kerrie Berry, who managed the genome sequencing project; and David Goodstein and Patrick Davidson, who designed and created the BrachyPan website.

David Gilbert | EurekAlert!

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>