Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What are the effects of coral reef marine protected areas?

21.06.2018

How can tropical coral reefs be protected effectively? An international team of 37 scientists from around the world studied nearly 1,800 coral reefs to determine the effectiveness of protective measures in areas with varying degrees of human influence. The study comprises data collected over a period of nine years and was published this week in the renowned journal Proceedings of the National Academy of Sciences.

With his research on coral reefs off the Indonesian island of Sulawesi, reef ecologist Dr. Sebastian Ferse from the Leibniz Centre for Tropical Marine Research (ZMT) contributed to the study. “We have been able to show that the influence of humans in the vicinity of the managed areas determines which goals of protection are achieved,” reports Ferse.


Coral reef with plenty of fish in a National Park off Thailand.

Photo: Melanie Bon, Leibniz Centre for Tropical Marine Research


A grey reef shark swims over a reef in a large protected area far from humans.

Photo: Nick Graham

Protected areas in areas with high human impacts had only a quarter of the fish biomass compared to those in regions far from human influence. Reasons include illegal fishing and fish swimming across the boundaries of the protected zones into areas freely accessible to fishermen.

The scientists also compared protected and unprotected areas along varying degrees of human influence. “This allowed us to find out under which conditions protective measures have the greatest effect,” says Sebastian Ferse.

In regions with high human impacts, researchers found up to five times more fish biomass in protected areas than in reefs where fishing was not restricted. For most fish species, the highest effect of protection can be achieved where humans already have a fairly strong influence on the reefs. The adjacent marine areas also benefit from fish growing up in protected areas but spilling over to neighbouring reefs.

However, for the big predatory fish, such as sharks and large groupers, the results looked different. The probability of encountering these predatory fish in the protected areas at places with high human pressure was a hundred times lower than in areas far from human influence. About 200 dives were necessary to see one of the big predatory fish, but in remote places they were encountered on almost every second dive.

“This is due to the fact that large predatory fish also roam over large areas and therefore swim beyond the boundaries of the protected zone more frequently,” says Ferse. “In addition, fishing usually selectively targets the largest species, so they are also the first to be decimated”. So, according to Ferse, when it comes to protecting large predatory fish such as sharks, protection efforts are best focused on the more remote areas.

In many locations it is not realistic to enforce protected areas with a complete ban on fishing due to the local social, economic and cultural conditions. “In the study, we therefore also examined the effectiveness of fishing restrictions, which, for example, only permits selected fishing methods,” explains Sebastian Ferse.

The results were encouraging. Although the effect of partial restrictions was not as great as with complete protection, there was significantly more fish biomass in these areas than in those with no restrictions at all. “Such a concept of protection is usually easier to accept and represents a compromise,” says Ferse.

The research results point to the trade-offs between conservation objectives such as protection of large predators or maximizing fishable biomass. They thus provide environmental managers with tangible information on tailored management approaches to meet specific objectives under particular local conditions.

Publication
The study titled "The gravity of human impacts mediates coral reef conservation gains" was published online this week in the journal Proceedings of the National Academy of Sciences: www.pnas.org/cgi/doi/10.1073/pnas.1708001115

Contact
Dr. Sebastian Ferse
Leibniz Centre for Tropical Marine Research (ZMT)
Phone: 0421 / 23800-28
Email: sebastian.ferse@leibniz-zmt.de

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>