Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways to stretch DNA and other organic molecules

06.06.2012
By taking advantage of the unique patterns generated when two immiscible fluids flow together, scientists have developed a new tool for studying tiny biomolecules.

Researchers at the National Taiwan University and the National Central University in Taiwan used a technique called two-phase microfluidics to stretch organic molecules in a systematic manner.

The researchers created different types of flow patterns by controlling wall wettability of a microfluidic channel, the flow rate ratio of two fluids, and the Reynolds number, which is a ratio between the inertial and viscous forces in a fluid.

By systematically varying these three parameters, the researchers could control the extension of a polymer string suspended in the fluid flow. Stretching polymers, proteins, DNA, and other organic macromolecules can reveal clues about what the molecules are made of and how they interact with other substances.

TITLE: "Polymer stretch in two-phase microfluidics: Effect of wall wettability"
JOURNAL: Biomicrofluidics
AUTHORS: Ssu-Wei Hu (1), Yu-Jane Sheng (1), and Heng-Kwong Tsao (2)
(1) Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan

(2) Department of Chemical and Materials Engineering, Department of Physics, National Central University, Jhongli, Taiwan

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>