Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste water without pharmaceutical residues – New process completely eliminates trace substances

14.05.2018

Pharmaceutical residues in waste water pose new challenges for municipal water treatment. Established methods are frequently found lacking when it comes to removing such substances. A treatment module developed at Fraunhofer IKTS provides a remedy and completely eliminates these harmful substances.

In Germany, approximately 38,000 tons of medicines, including hormones, antibiotics and antivirals, are consumed annually. Their residues are increasingly found in the waste water of conurbations. From there they also enter ground- and surface water.


© Fraunhofer IKTS

Processing module with integrated ultrasonic sensors for complete removal of pharmaceutical residues.

Ususally they are difficult to remove with conventional sewage plant and water treatment technology. Two very worrying trends are associated with this: the increasing of both the spread of multiresistant microorganisms and fertility disorders.

With the help of electrochemical processes, pharmaceutical residues can be completely degraded. They are electrochemically converted at the anode of an electrolysis cell, leaving only carbon dioxide. However, the anodes made of boron-doped diamond with a price of currently approx. 16,000 € per square meter are much too expensive. Fraunhofer IKTS is pursuing two approaches in order to manufacture the electrodes more cost-efficiently and increase the degradation rates.

Cost-efficient anode materials in combination with ultrasound

On the one hand, an alternative noble-metal-free anode material of semiconducting mixed-oxide phases was developed. Tin-antimony oxide-based systems have proven to be particularly effective. With the same functionality and service life, they cost only one tenth compared to boron-doped diamond.

On the other hand, researchers at Fraunhofer IKTS cause the waste water to oscillate by means of ultrasound in order to intensify the mass transport at the electrode and thus reach even higher degradation rates. This is achieved by minimizing the thickness of the diffusion layer on the anode. The layer acts as a kind of reaction barrier and thus slows down their destruction.

Ceramic-based electrode-sonotrode module

Not only the process combination is sophisticated, but also the design of the corresponding electrode-sonotrode module. The innovative approach consists of pressing the ultrasonic sensors directly onto the ceramic electrode so that it vibrates like a spring. This greatly improves material transport to the electrode. This is made possible by ceramic materials and technologies.

Fraunhofer IKTS covers the entire technological chain – from the development of functional materials, screen printing of ultrasonic actuators, suitable joining technologies for contacting the electrode to systems integration. In addition, there is extensive know-how in the field of electrochemical process engineering, which forms the basis for the successful treatment of polluted waste water. These intertwined competences of a research institute are unique in Europe.

On a laboratory scale, a convincing proof of the function of the new electrode-sonotrode module has recently been provided and a patent application has been filed. “In view of the positive results, we now see upscaling as a realistic goal. An electrochemical reactor is being developed and tested on a technical scale for this purpose,“ says Dipl.-Chem. Hans-Jürgen Friedrich, head of Technical Electrolysis and Geothermal Energy group at Fraunhofer IKTS in Dresden.

In the future, the electrode-sonotrode module will also be used in other sectors, such as the destruction of nitroaromatics, plasticizers, herbicide residues or other toxic substances in commercial waste water. “Applications in the field of chemical synthesis and sensor technology are also focused,“ adds project manager Hans-Jürgen Friedrich.

At this year‘s IFAT, Fraunhofer IKTS presents its entire portfolio of efficient and environmentally friendly water treatment technologies on Booth 132 in Hall A3.

Weitere Informationen:

https://www.ikts.fraunhofer.de/en/press_media/press_releases/waste_water_without...
https://www.ikts.fraunhofer.de/en/communication/trade_fairs/ifat_18.html

Dipl.-Chem. Katrin Schwarz | Fraunhofer Institute for Ceramic Technologies and Systems IKTS

More articles from Life Sciences:

nachricht Scientists first to develop rapid cell division in marine sponges
21.11.2019 | Florida Atlantic University

nachricht Machine learning microscope adapts lighting to improve diagnosis
21.11.2019 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Designer lens helps see the big picture

21.11.2019 | Interdisciplinary Research

Machine learning microscope adapts lighting to improve diagnosis

21.11.2019 | Life Sciences

Soft skin-like robots you can put in your pocket

21.11.2019 | Interdisciplinary Research

VideoLinks
Science & Research
Overview of more VideoLinks >>>