Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walk this way: Scientists and MBL physiology students describe how a motor protein 'steps out'

16.01.2012
Just like people, some proteins have characteristic ways of "walking," which (also like human gaits) are not so easy to describe.

But now scientists have discovered the unique "drunken sailor" gait of dynein, a protein that is critical for the function of every cell in the body and whose malfunction has been associated with neurodegenerative disorders such as Lou Gehrig's disease and Parkinson's disease.

The research, which was led by Samara Reck-Peterson of Harvard Medical School and partially conducted in the MBL Physiology Course, received advance online publication this week in the journal Nature Structural & Molecular Biology.

Found in all of our cells, dynein is one of three types of "motor proteins": tiny molecular machines that are constantly working to shuttle materials needed to keep cells alive, allow cells to move and divide, and talk to their neighbors. All three models of motor protein (dynein, myosin, and kinesin) are "two-footed" and use the energy from breaking chemical bonds to generate movement.

"The myosin and kinesin motors work by walking more or less like we do: one foot in front of the other in a straight line," says Reck-Peterson. "We have discovered that the third motor model, dynein, appears to be different. Its two feet are at times uncoordinated and often veer from side to side (think drunken sailor). This mode of walking makes the dynein motor unique and may allow it to navigate obstacles while performing its transport functions in cells. Interestingly, our data also suggest that the dynein motor becomes more coordinated when it is hauling something large, implying that the motor can become more efficient when necessary."

Although this discovery is but a "first step," deciphering the walking mechanism of dynein may one day shed light on the molecular basis of neurodegenerative disease, Reck-Peterson says.

Co-authors Elizabeth Villa of the Max Planck Institute of Biochemistry and David Wu of UCLA's Geffen School of Medicine were students in the 2007 MBL Physiology Course. There, they began writing custom software code to analyze molecular movement by "two-dimensional particle tracking," which was used in this research.

Reck-Peterson is also an alumna of the MBL Physiology Course as a student (1994) teaching assistant (1997, 1998, 2005) and instructor (2008). "The course has had a major impact on my scientific career," she says. "I would say it is the reason I am doing science today!"

Citation: Qiu W., Derr ND, Goodman BS, Villa E, Wu D, Shih W, and Reck-Peterson SL (2012) Dynein achieves processive motion using both stochastic and coordinated stepping. Nature Struct. & Mol. Biol. doi:10.1038/nsmb.2205.

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in 1888 in Woods Hole, Massachusetts, the MBL is an independent, nonprofit corporation.

Diana Kenney | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>