Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vitamin D prevents clogged arteries in diabetics

14.11.2012
People with diabetes often develop clogged arteries that cause heart disease, and new research at Washington University School of Medicine in St. Louis suggests that low vitamin D levels are to blame.

In a study published Nov. 9 in the Journal of Biological Chemistry, the researchers report that blood vessels are less like to clog in people with diabetes who get adequate vitamin D. But in patients with insufficient vitamin D, immune cells bind to blood vessels near the heart, then trap cholesterol to block those blood vessels.


Bernal-Mizrachi lab

Low levels of vitamin D in people with diabetes appear to encourage cholesterol to build up in arteries, eventually blocking the flow of blood. In mice, immune cells adhering to the wall of a major blood vessel near the heart are loaded with cholesterol (shown in red).

“About 26 million Americans now have type 2 diabetes,” says principal investigator Carlos Bernal-Mizrachi, MD. “And as obesity rates rise, we expect even more people will develop diabetes. Those patients are more likely to experience heart problems due to an increase in vascular inflammation, so we have been investigating why this occurs.”

In earlier research, Bernal-Mizrachi, an assistant professor of medicine and of cell biology and physiology, and his colleagues found that vitamin D appears to play a key role in heart disease. This new study takes their work a step further, suggesting that when vitamin D levels are low, a particular class of white blood cell is more likely to adhere to cells in the walls of blood vessels.

Vitamin D conspires with immune cells called macrophages either to keep arteries clear or to clog them. The macrophages begin their existence as white blood cells called monocytes that circulate in the bloodstream. But when monocytes encounter inflammation, they are transformed into macrophages, which no longer circulate.

In the new study, researchers looked at vitamin D levels in 43 people with type 2 diabetes and in 25 others who were similar in age, sex and body weight but didn’t have diabetes.

They found that in diabetes patients with low vitamin D — less than 30 nanograms per milliliter of blood — the macrophage cells were more likely to adhere to the walls of blood vessels, which triggers cells to get loaded with cholesterol, eventually causing the vessels to stiffen and block blood flow.

“We took everything into account,” says first author Amy E. Riek, MD, instructor in medicine. “We looked at blood pressure, cholesterol, diabetes control, body weight and race. But only vitamin D levels correlated to whether these cells stuck to the blood vessel wall.”

Riek and Bernal-Mizrachi say what’s not yet clear is whether giving vitamin D to people with diabetes will reverse their risk of developing clogged arteries, a condition called atherosclerosis. They now are treating mice with vitamin D to see whether it can prevent monocytes from adhering to the walls of blood vessels near the heart, and they also are conducting two clinical trials in patients.

In one of those studies, the researchers are giving vitamin D to people with diabetes and hypertension to see whether the treatment may lower blood pressure. In the second study, African Americans with type 2 diabetes are getting vitamin D along with their other daily medications, and the research team is evaluating whether vitamin D supplements can slow or reverse the progression of heart disease.

Sometime in the next several months, the scientists hope to determine whether vitamin D treatment can reverse some of the risk factors associated with cardiovascular disease.

“In the future, we hope to generate medications, potentially even vitamin D itself, that help prevent the deposit of cholesterol in the blood vessels,” Bernal-Mizrachi explains. “Previous studies have linked vitamin D deficiency in these patients to increases in cardiovascular disease and in mortality. Other work has suggested that vitamin D may improve insulin release from the pancreas and insulin sensitivity. Our ultimate goal is to intervene in people with diabetes and to see whether vitamin D might decrease inflammation, reduce blood pressure and lessen the likelihood that they will develop atherosclerosis or other vascular complications.”

For more information on the current clinical studies involving vitamin D in people with diabetes, call study coordinator Robin Bruchas at (314) 362-0934.

Riek AE, Sprague JE, Timpson A, de las Fuentes L, Bernal-Mizrachi L, Schechtman KB, Bernal-Mizrachi C. Vitamin D suppression of endoplasmic reticulum stress promotes an anti-atherogenic monocyte/macrophage phenotype in type 2 diabetic patients. Journal of Biological Chemistry vol. 287 (46), pp. 38482-38494. Nov. 9, 2012

http://www.jbc.org/cgi/doi/10.1074/jbc.M112.386912

Funding for this research comes from the National Heart, Lung and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Center for Research Resources (NCRR), National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research of the National Institutes of Health (NIH). Support also comes from the American Diabetes Association, the Endocrine Society, the Endocrine Fellows Foundation and the Ruth L. Kirchstein National Research Service Award 2. NIH grant numbers are RO1 HO094818-0, P30DK079333, T32 HD043010, and UL1TRR000448/Sub-Award KL2TR000450.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>